IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0219502.html
   My bibliography  Save this article

How learning can change the course of evolution

Author

Listed:
  • Leonel Aguilar
  • Stefano Bennati
  • Dirk Helbing

Abstract

The interaction between phenotypic plasticity, e.g. learning, and evolution is an important topic both in Evolutionary Biology and Machine Learning. The evolution of learning is commonly studied in Evolutionary Biology, while the use of an evolutionary process to improve learning is of interest to the field of Machine Learning. This paper takes a different point of view by studying the effect of learning on the evolutionary process, the so-called Baldwin effect. A well-studied result in the literature about the Baldwin effect is that learning affects the speed of convergence of the evolutionary process towards some genetic configuration, which corresponds to the environment-induced plastic response. This paper demonstrates that learning can change the outcome of evolution, i.e., lead to a genetic configuration that does not correspond to the plastic response. Results are obtained both analytically and experimentally by means of an agent-based model of a foraging task, in an environment where the distribution of resources follows seasonal cycles and the foraging success on different resource types is conditioned by trade-offs that can be evolved and learned. This paper attempts to answer a question that has been overlooked: whether learning has an effect on what genotypic traits are evolved, i.e. the selection of a trait that enables a plastic response changes the selection pressure on a different trait, in what could be described as co-evolution between different traits in the same genome.

Suggested Citation

  • Leonel Aguilar & Stefano Bennati & Dirk Helbing, 2019. "How learning can change the course of evolution," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-23, September.
  • Handle: RePEc:plo:pone00:0219502
    DOI: 10.1371/journal.pone.0219502
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219502
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0219502&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0219502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noah Gans & George Knox & Rachel Croson, 2007. "Simple Models of Discrete Choice and Their Performance in Bandit Experiments," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 383-408, December.
    2. Terry E. Daniel & Eyran J. Gisches & Amnon Rapoport, 2009. "Departure Times in Y-Shaped Traffic Networks with Multiple Bottlenecks," American Economic Review, American Economic Association, vol. 99(5), pages 2149-2176, December.
    3. Iftekhar, M. S. & Tisdell, J. G., 2018. "Learning in repeated multiple unit combinatorial auctions: An experimental study," Working Papers 267301, University of Western Australia, School of Agricultural and Resource Economics.
    4. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    5. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    6. Oechssler, Jorg & Schipper, Burkhard, 2003. "Can you guess the game you are playing?," Games and Economic Behavior, Elsevier, vol. 43(1), pages 137-152, April.
    7. Erhao Xie, 2019. "Monetary Payoff and Utility Function in Adaptive Learning Models," Staff Working Papers 19-50, Bank of Canada.
    8. B Kelsey Jack, 2009. "Auctioning Conservation Contracts in Indonesia - Participant Learning in Multiple Trial Rounds," CID Working Papers 35, Center for International Development at Harvard University.
    9. Isabelle Brocas & Juan D. Carrillo, 2022. "The development of randomization and deceptive behavior in mixed strategy games," Quantitative Economics, Econometric Society, vol. 13(2), pages 825-862, May.
    10. James Choi & David Laibson & Brigitte Madrain & Andrew Metrick, 2007. "Reinforcement Learning in Investment Behavior," Levine's Bibliography 122247000000001737, UCLA Department of Economics.
    11. Enkhtaivan, Bolortuya & Davaadorj, Zagdbazar, 2021. "Do they recall their past? CEOs’ liquidity policies across firms as they switch jobs," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    12. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    13. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    14. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    15. Marco LiCalzi & Roland Mühlenbernd, 2022. "Feature-weighted categorized play across symmetric games," Experimental Economics, Springer;Economic Science Association, vol. 25(3), pages 1052-1078, June.
    16. Ferraro Paul J & Vossler Christian A, 2010. "The Source and Significance of Confusion in Public Goods Experiments," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(1), pages 1-42, July.
    17. Mariano Runco, 2013. "Estimating depth of reasoning in a repeated guessing game with no feedback," Experimental Economics, Springer;Economic Science Association, vol. 16(3), pages 402-413, September.
    18. Fernando Lozano & Jaime Lozano & Mario García, 2007. "An artificial economy based on reinforcement learning and agent based modeling," Documentos de Trabajo 3907, Universidad del Rosario.
    19. Jason McKenzie Alexander & Brian Skyrms & Sandy Zabell, 2012. "Inventing New Signals," Dynamic Games and Applications, Springer, vol. 2(1), pages 129-145, March.
    20. Sueyoshi, Toshiyuki, 2010. "An agent-based approach equipped with game theory: Strategic collaboration among learning agents during a dynamic market change in the California electricity crisis," Energy Economics, Elsevier, vol. 32(5), pages 1009-1024, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.