IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0219114.html
   My bibliography  Save this article

Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinson’s disease

Author

Listed:
  • Boon Leong Lan
  • Jacob Hsiao Wen Yeo

Abstract

Giancardo et al. recently introduced the neuroQWERTY index (nQi), which is a novel motor index derived from computer-key-hold-time data using an ensemble regression algorithm, to detect early-stage Parkinson’s disease. Here, we derive a much simpler motor index from their hold-time data, which is the standard deviation (SD) of the hold-time fluctuations, where fluctuation is defined as the difference between successive natural-log of hold time. Our results show the performance of the SD and nQi tests in discriminating early-stage subjects from controls do not differ, although the SD index is much simpler. There is also no difference in performance between the SD and alternating-finger-tapping tests.

Suggested Citation

  • Boon Leong Lan & Jacob Hsiao Wen Yeo, 2019. "Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinson’s disease," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-7, June.
  • Handle: RePEc:plo:pone00:0219114
    DOI: 10.1371/journal.pone.0219114
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219114
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0219114&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0219114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bartsch, Ronny & Plotnik, Meir & Kantelhardt, Jan W. & Havlin, Shlomo & Giladi, Nir & Hausdorff, Jeffrey M., 2007. "Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 455-465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segun Goh & Kyungreem Han & Jehkwang Ryu & Seonjin Kim & MooYoung Choi, 2015. "Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    2. Lahmiri, Salim, 2017. "Parkinson’s disease detection based on dysphonia measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 98-105.
    3. Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    4. Kembro, Jackelyn M. & Flesia, Ana Georgina & Gleiser, Raquel M. & Perillo, María A. & Marin, Raul H., 2013. "Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6400-6413.
    5. de Oliveira, M. Elias & Menegaldo, L.L. & Lucarelli, P. & Andrade, B.L.B. & Büchler, P., 2011. "On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4451-4458.
    6. Echeverria, Juan C. & Rodriguez, Eduardo & Velasco, Alejandra & Alvarez-Ramirez, Jose, 2010. "Limb dominance changes in walking evolution explored by asymmetric correlations in gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1625-1634.
    7. Mitsuru Yoneyama, 2014. "A study of gait acceleration and synchronisation in healthy adult subjects," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(14), pages 1542-1552, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.