IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0032600.html
   My bibliography  Save this article

Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients

Author

Listed:
  • Michael J Hove
  • Kazuki Suzuki
  • Hirotaka Uchitomi
  • Satoshi Orimo
  • Yoshihiro Miyake

Abstract

Parkinson's disease (PD) and basal ganglia dysfunction impair movement timing, which leads to gait instability and falls. Parkinsonian gait consists of random, disconnected stride times—rather than the 1/f structure observed in healthy gait—and this randomness of stride times (low fractal scaling) predicts falling. Walking with fixed-tempo Rhythmic Auditory Stimulation (RAS) can improve many aspects of gait timing; however, it lowers fractal scaling (away from healthy 1/f structure) and requires attention. Here we show that interactive rhythmic auditory stimulation reestablishes healthy gait dynamics in PD patients. In the experiment, PD patients and healthy participants walked with a) no auditory stimulation, b) fixed-tempo RAS, and c) interactive rhythmic auditory stimulation. The interactive system used foot sensors and nonlinear oscillators to track and mutually entrain with the human's step timing. Patients consistently synchronized with the interactive system, their fractal scaling returned to levels of healthy participants, and their gait felt more stable to them. Patients and healthy participants rarely synchronized with fixed-tempo RAS, and when they did synchronize their fractal scaling declined from healthy 1/f levels. Five minutes after removing the interactive rhythmic stimulation, the PD patients' gait retained high fractal scaling, suggesting that the interaction stabilized the internal rhythm generating system and reintegrated timing networks. The experiment demonstrates that complex interaction is important in the (re)emergence of 1/f structure in human behavior and that interactive rhythmic auditory stimulation is a promising therapeutic tool for improving gait of PD patients.

Suggested Citation

  • Michael J Hove & Kazuki Suzuki & Hirotaka Uchitomi & Satoshi Orimo & Yoshihiro Miyake, 2012. "Interactive Rhythmic Auditory Stimulation Reinstates Natural 1/f Timing in Gait of Parkinson's Patients," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
  • Handle: RePEc:plo:pone00:0032600
    DOI: 10.1371/journal.pone.0032600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0032600
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0032600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0032600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J A Scott Kelso & Gonzalo C de Guzman & Colin Reveley & Emmanuelle Tognoli, 2009. "Virtual Partner Interaction (VPI): Exploring Novel Behaviors via Coordination Dynamics," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-11, June.
    2. Bartsch, Ronny & Plotnik, Meir & Kantelhardt, Jan W. & Havlin, Shlomo & Giladi, Nir & Hausdorff, Jeffrey M., 2007. "Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 455-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirotaka Uchitomi & Leo Ota & Ken-ichiro Ogawa & Satoshi Orimo & Yoshihiro Miyake, 2013. "Interactive Rhythmic Cue Facilitates Gait Relearning in Patients with Parkinson's Disease," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segun Goh & Kyungreem Han & Jehkwang Ryu & Seonjin Kim & MooYoung Choi, 2015. "Failure of Arm Movement Control in Stroke Patients, Characterized by Loss of Complexity," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    2. Chao Zhai & Francesco Alderisio & Piotr Słowiński & Krasimira Tsaneva-Atanasova & Mario di Bernardo, 2016. "Design of a Virtual Player for Joint Improvisation with Humans in the Mirror Game," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    3. Lahmiri, Salim, 2017. "Parkinson’s disease detection based on dysphonia measurements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 98-105.
    4. Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    5. Kembro, Jackelyn M. & Flesia, Ana Georgina & Gleiser, Raquel M. & Perillo, María A. & Marin, Raul H., 2013. "Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6400-6413.
    6. de Oliveira, M. Elias & Menegaldo, L.L. & Lucarelli, P. & Andrade, B.L.B. & Büchler, P., 2011. "On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4451-4458.
    7. Gregory Zelic & Denis Mottet & Julien Lagarde, 2012. "Behavioral Impact of Unisensory and Multisensory Audio-Tactile Events: Pros and Cons for Interlimb Coordination in Juggling," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    8. Alexander Mörtl & Tamara Lorenz & Sandra Hirche, 2014. "Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-17, April.
    9. Boon Leong Lan & Jacob Hsiao Wen Yeo, 2019. "Comparison of computer-key-hold-time and alternating-finger-tapping tests for early-stage Parkinson’s disease," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-7, June.
    10. Jie Zhang & Kai Zhang & Jianfeng Feng & Michael Small, 2010. "Rhythmic Dynamics and Synchronization via Dimensionality Reduction: Application to Human Gait," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    11. Auriel Washburn & Rachel W Kallen & Maurice Lamb & Nigel Stepp & Kevin Shockley & Michael J Richardson, 2019. "Feedback delays can enhance anticipatory synchronization in human-machine interaction," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-17, August.
    12. Iran R Roman & Auriel Washburn & Edward W Large & Chris Chafe & Takako Fujioka, 2019. "Delayed feedback embedded in perception-action coordination cycles results in anticipation behavior during synchronized rhythmic action: A dynamical systems approach," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-32, October.
    13. Echeverria, Juan C. & Rodriguez, Eduardo & Velasco, Alejandra & Alvarez-Ramirez, Jose, 2010. "Limb dominance changes in walking evolution explored by asymmetric correlations in gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1625-1634.
    14. Hirotaka Uchitomi & Leo Ota & Ken-ichiro Ogawa & Satoshi Orimo & Yoshihiro Miyake, 2013. "Interactive Rhythmic Cue Facilitates Gait Relearning in Patients with Parkinson's Disease," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-10, September.
    15. Viviane Kostrubiec & Guillaume Dumas & Pier-Giorgio Zanone & J A Scott Kelso, 2015. "The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-24, November.
    16. Mitsuru Yoneyama, 2014. "A study of gait acceleration and synchronisation in healthy adult subjects," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 17(14), pages 1542-1552, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0032600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.