IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218771.html
   My bibliography  Save this article

Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks

Author

Listed:
  • David Ibáñez-Soria
  • Aureli Soria-Frisch
  • Jordi Garcia-Ojalvo
  • Giulio Ruffini

Abstract

State Visual Evoked Potentials (SSVEPs) arise from a resonance phenomenon in the visual cortex that is produced by a repetitive visual stimulus. SSVEPs have long been considered a steady-state response resulting from purely oscillatory components phase locked with the stimulation source, matching the stimulation frequency and its harmonics. Here we explore the dynamical character of the SSVEP response by proposing a novel non-stationary methodology for SSVEP detection based on an ensemble of Echo State Networks (ESN). The performance of this dynamical approach is compared to stationary canonical correlation analysis (CCA) for the detection of 6 visual stimulation frequencies ranging from 12 to 22 Hz. ESN-based methodology outperformed CCA, achieving an average information transfer rate of 47 bits/minute when simulating a BCI system of 6 degrees of freedom. However, for some subjects and stimulation frequencies the detection accuracy of CCA exceeds that of ESN. The comparison suggests that each methodology captures different features of the SSVEP response: while CCA captures purely stationary patterns, the ESN-based approach presented here is capable of detecting the non-stationary nature of the SSVEP.

Suggested Citation

  • David Ibáñez-Soria & Aureli Soria-Frisch & Jordi Garcia-Ojalvo & Giulio Ruffini, 2019. "Characterization of the non-stationary nature of steady-state visual evoked potentials using echo state networks," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0218771
    DOI: 10.1371/journal.pone.0218771
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218771
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218771&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zafer İşcan & Vadim V Nikulin, 2018. "Steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) performance under different perturbations," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-17, January.
    2. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Álvarez-Díaz & Alberto Álvarez, 2002. "Predicción No-Lineal De Tipos De Cambio: Algoritmos Genéticos, Redes Neuronales Y Fusión De Datos," Working Papers 0205, Universidade de Vigo, Departamento de Economía Aplicada.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Oscar Claveria & Enric Monte & Petar Soric & Salvador Torra, 2022. ""An application of deep learning for exchange rate forecasting"," IREA Working Papers 202201, University of Barcelona, Research Institute of Applied Economics, revised Jan 2022.
    4. Sander van der Hoog, 2017. "Deep Learning in (and of) Agent-Based Models: A Prospectus," Papers 1706.06302, arXiv.org.
    5. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    6. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    7. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    8. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    9. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    10. Chen, Shiyi & Jeong, Kiho & Härdle, Wolfgang Karl, 2008. "Recurrent support vector regression for a nonlinear ARMA model with applications to forecasting financial returns," SFB 649 Discussion Papers 2008-051, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    11. Carlos R. Barrera Chaupis, 2018. "Inventory Adjustments to Demand Shocks under Flexible Specifications," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 149-201, january-j.
    12. repec:hum:wpaper:sfb649dp2008-073 is not listed on IDEAS
    13. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    14. Krishna, Kala & Ozyildirim, Ataman & Swanson, Norman R., 2003. "Trade, investment and growth: nexus, analysis and prognosis," Journal of Development Economics, Elsevier, vol. 70(2), pages 479-499, April.
    15. H. Peter Boswijk & Philip Hans Franses & Dick van Dijk, 2000. "Asymmetric and Common Absorption of Shocks in Nonlinear Autoregressive Models," Econometric Society World Congress 2000 Contributed Papers 0765, Econometric Society.
    16. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    17. Andrea Bucci, 2020. "Cholesky–ANN models for predicting multivariate realized volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 865-876, September.
    18. Marcos Alvarez-Diaz & Alberto Alvarez, 2003. "Forecasting exchange rates using genetic algorithms," Applied Economics Letters, Taylor & Francis Journals, vol. 10(6), pages 319-322.
    19. Yamin Ahmad & Adam Check & Ming Chien Lo, 2024. "Unit Roots in Macroeconomic Time Series: A Comparison of Classical, Bayesian and Machine Learning Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2139-2173, June.
    20. Jaehun Chung & Yongmiao Hong, 2007. "Model-free evaluation of directional predictability in foreign exchange markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(5), pages 855-889.
    21. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.