IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217283.html
   My bibliography  Save this article

Tournaments between markers as a strategy to enhance genomic predictions

Author

Listed:
  • Diógenes Ferreira Filho
  • Júlio Sílvio de Sousa Bueno Filho
  • Luciana Correia de Almeida Regitano
  • Maurício Mello de Alencar
  • Rosiana Rodrigues Alves
  • Sarah Laguna Conceição Meirelles

Abstract

Analysis of a large number of markers is crucial in both genome-wide association studies (GWAS) and genome-wide selection (GWS). However there are two methodological issues that restrict statistical analysis: high dimensionality (p≫n) and multicollinearity. Although there are methodologies that can be used to fit models for data with high dimensionality (eg, the Bayesian Lasso), a big problem that can occurs in this cases is that the predictive ability of the model should perform well for the individuals used to fit the model, but should not perform well for other individuals, restricting the applicability of the model. This problem can be circumvent by applying some selection methodology to reduce the number of markers (but keeping the markers associated with the phenotypic trait) before adjusting a model to predict GBVs. We revisit a tournament-based strategy between marker samples, where each sample has good statistical properties for estimation: n>p and low collinearity. Such tournaments are elaborated using multiple linear regression to eliminate markers. This method is adapted from previous works found in the literature. We used simulated data as well as real data derived from a study with SNPs in beef cattle. Tournament strategies not only circumvent the p≫n issue, but also minimize spurious associations. For real data, when we selected a few more than 20 markers, we obtained correlations greater than 0.70 between predicted Genomic Breeding Values (GBVs) and phenotypes in validation groups of a cross-validation scheme; and when we selected a larger number of markers (more than 100), the correlations exceeded 0.90, showing the efficiency in identifying relevant SNPs (or segregations) for both GWAS and GWS. In the simulation study, we obtained similar results.

Suggested Citation

  • Diógenes Ferreira Filho & Júlio Sílvio de Sousa Bueno Filho & Luciana Correia de Almeida Regitano & Maurício Mello de Alencar & Rosiana Rodrigues Alves & Sarah Laguna Conceição Meirelles, 2019. "Tournaments between markers as a strategy to enhance genomic predictions," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-17, June.
  • Handle: RePEc:plo:pone00:0217283
    DOI: 10.1371/journal.pone.0217283
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217283
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217283&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    3. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    5. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    6. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    7. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    8. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    9. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    10. Eliaz, Kfir & Spiegler, Ran, 2022. "On incentive-compatible estimators," Games and Economic Behavior, Elsevier, vol. 132(C), pages 204-220.
    11. Ruixin Guo & Hongtu Zhu & Sy-Miin Chow & Joseph G. Ibrahim, 2012. "Bayesian Lasso for Semiparametric Structural Equation Models," Biometrics, The International Biometric Society, vol. 68(2), pages 567-577, June.
    12. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    13. Francesca Caselli & Matilde Faralli & Paolo Manasse & Ugo Panizza, 2021. "On the Benefits of Repaying," IMF Working Papers 2021/233, International Monetary Fund.
    14. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    15. Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
    16. Korobilis, Dimitris, 2015. "Quantile forecasts of inflation under model uncertainty," MPRA Paper 64341, University Library of Munich, Germany.
    17. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    18. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
    19. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    20. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.