IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0214719.html
   My bibliography  Save this article

Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex

Author

Listed:
  • Sean Lim
  • Xiaokan Guo
  • James Q Boedicker

Abstract

Some strains of motile bacteria self-organize to form spatial patterns of high and low cell density over length scales that can be observed by eye. One such collective behavior is the formation in semisolid agar media of a high cell density swarm band. We isolated 7 wild strains of the Enterobacter cloacae complex capable of forming this band and found its propagation speed can vary 2.5 fold across strains. To connect such variability in collective motility to strain properties, each strain’s single-cell motility and exponential growth rates were measured. The band speed did not significantly correlate with any individual strain property; however, a multilinear analysis revealed that the band speed was set by a combination of the run speed and tumbling frequency. Comparison of variability in closely-related wild isolates has the potential to reveal how changes in single-cell properties influence the collective behavior of populations.

Suggested Citation

  • Sean Lim & Xiaokan Guo & James Q Boedicker, 2019. "Connecting single-cell properties to collective behavior in multiple wild isolates of the Enterobacter cloacae complex," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0214719
    DOI: 10.1371/journal.pone.0214719
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214719
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0214719&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0214719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benedict Borer & Robin Tecon & Dani Or, 2018. "Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. X. Fu & S. Kato & J. Long & H. H. Mattingly & C. He & D. C. Vural & S. W. Zucker & T. Emonet, 2018. "Spatial self-organization resolves conflicts between individuality and collective migration," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Courcoubetis & Manasi S Gangan & Sean Lim & Xiaokan Guo & Stephan Haas & James Q Boedicker, 2022. "Formation, collective motion, and merging of macroscopic bacterial aggregates," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng Li & Alexandra N. Kravchenko & Alison Cupples & Andrey K. Guber & Yakov Kuzyakov & G. Philip Robertson & Evgenia Blagodatskaya, 2024. "Composition and metabolism of microbial communities in soil pores," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Maxime Batsch & Isaline Guex & Helena Todorov & Clara M. Heiman & Jordan Vacheron & Julia A. Vorholt & Christoph Keel & Jan Roelof van der Meer, 2024. "Fragmented micro-growth habitats present opportunities for alternative competitive outcomes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Antoine Hubert & Hervé Tabuteau & Julien Farasin & Aleksandar Loncar & Alexis Dufresne & Yves Méheust & Tanguy Borgne, 2024. "Fluid flow drives phenotypic heterogeneity in bacterial growth and adhesion on surfaces," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    5. Thomas O. Richardson & Nathalie Stroeymeyt & Alessandro Crespi & Laurent Keller, 2022. "Two simple movement mechanisms for spatial division of labour in social insects," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    7. Aranda, Orestes Tumbarell & Penna, André L.A. & Oliveira, Fernando A., 2021. "Nonlocal pattern formation effects in evolutionary population dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0214719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.