IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211710.html
   My bibliography  Save this article

Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects

Author

Listed:
  • Kristen Tgavalekos
  • Thao Pham
  • Nishanth Krishnamurthy
  • Angelo Sassaroli
  • Sergio Fantini

Abstract

We report a study on twenty-two healthy human subjects of the dynamic relationship between cerebral hemoglobin concentration ([HbT]), measured with near-infrared spectroscopy (NIRS) in the prefrontal cortex, and systemic arterial blood pressure (ABP), measured with finger plethysmography. [HbT] is a measure of local cerebral blood volume (CBV). We induced hemodynamic oscillations at discrete frequencies in the range 0.04–0.20 Hz with cyclic inflation and deflation of pneumatic cuffs wrapped around the subject’s thighs. We modeled the transfer function of ABP and [HbT] in terms of effective arterial (K(a)) and venous (K(v)) compliances, and a cerebral autoregulation time constant (τ(AR)). The mean values (± standard errors) of these parameters across the twenty-two subjects were K(a) = 0.01 ± 0.01 μM/mmHg, K(v) = 0.09 ± 0.05 μM/mmHg, and τ(AR) = 2.2 ± 1.3 s. Spatially resolved measurements in a subset of eight subjects reveal a spatial variability of these parameters that may exceed the inter-subject variability at a set location. This study sheds some light onto the role that ABP and cerebral blood flow (CBF) play in the dynamics of [HbT] measured with NIRS, and paves the way for new non-invasive optical studies of cerebral blood flow and cerebral autoregulation.

Suggested Citation

  • Kristen Tgavalekos & Thao Pham & Nishanth Krishnamurthy & Angelo Sassaroli & Sergio Fantini, 2019. "Frequency-resolved analysis of coherent oscillations of local cerebral blood volume, measured with near-infrared spectroscopy, and systemic arterial pressure in healthy human subjects," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-27, February.
  • Handle: RePEc:plo:pone00:0211710
    DOI: 10.1371/journal.pone.0211710
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211710
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211710&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flora Y Wong & Reshma Silas & Simon Hew & Thilini Samarasinghe & Adrian M Walker, 2012. "Cerebral Oxygenation Is Highly Sensitive to Blood Pressure Variability in Sick Preterm Infants," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    2. Catherine N. Hall & Clare Reynell & Bodil Gesslein & Nicola B. Hamilton & Anusha Mishra & Brad A. Sutherland & Fergus M. O’Farrell & Alastair M. Buchan & Martin Lauritzen & David Attwell, 2014. "Capillary pericytes regulate cerebral blood flow in health and disease," Nature, Nature, vol. 508(7494), pages 55-60, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Airi Jo-Watanabe & Toshiki Inaba & Takahiro Osada & Ryota Hashimoto & Tomohiro Nishizawa & Toshiaki Okuno & Sayoko Ihara & Kazushige Touhara & Nobutaka Hattori & Masatsugu Oh-Hora & Osamu Nureki & Tak, 2024. "Bicarbonate signalling via G protein-coupled receptor regulates ischaemia-reperfusion injury," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Satoshi Ii & Hiroki Kitade & Shunichi Ishida & Yohsuke Imai & Yoshiyuki Watanabe & Shigeo Wada, 2020. "Multiscale modeling of human cerebrovasculature: A hybrid approach using image-based geometry and a mathematical algorithm," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-28, June.
    3. Bertan Hallacoglu & Angelo Sassaroli & Sergio Fantini, 2013. "Optical Characterization of Two-Layered Turbid Media for Non-Invasive, Absolute Oximetry in Cerebral and Extracerebral Tissue," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    4. Mohammad Haft-Javaherian & Linjing Fang & Victorine Muse & Chris B Schaffer & Nozomi Nishimura & Mert R Sabuncu, 2019. "Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-21, March.
    5. Adam Institoris & Milène Vandal & Govind Peringod & Christy Catalano & Cam Ha Tran & Xinzhu Yu & Frank Visser & Cheryl Breiteneder & Leonardo Molina & Baljit S. Khakh & Minh Dang Nguyen & Roger J. Tho, 2022. "Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Andrée-Anne Berthiaume & Franca Schmid & Stefan Stamenkovic & Vanessa Coelho-Santos & Cara D. Nielson & Bruno Weber & Mark W. Majesky & Andy Y. Shih, 2022. "Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Domenic H. Cerri & Daniel L. Albaugh & Lindsay R. Walton & Brittany Katz & Tzu-Wen Wang & Tzu-Hao Harry Chao & Weiting Zhang & Randal J. Nonneman & Jing Jiang & Sung-Ho Lee & Amit Etkin & Catherine N., 2024. "Distinct neurochemical influences on fMRI response polarity in the striatum," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.