IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0211654.html
   My bibliography  Save this article

Sensitivity analysis for reproducible candidate values of model parameters in signaling hub model

Author

Listed:
  • Kentaro Inoue

Abstract

Mathematical models for signaling pathways are helpful for understanding molecular mechanism in the pathways and predicting dynamic behavior of the signal activity. To analyze the robustness of such models, local sensitivity analysis has been implemented. However, such analysis primarily focuses on only a certain parameter set, even though diverse parameter sets that can recapitulate experiments may exist. In this study, we performed sensitivity analysis that investigates the features in a system considering the reproducible and multiple candidate values of the model parameters to experiments. The results showed that although different reproducible model parameter values have absolute differences with respect to sensitivity strengths, specific trends of some relative sensitivity strengths exist between reactions regardless of parameter values. It is suggested that (i) network structure considerably influences the relative sensitivity strength and (ii) one might be able to predict relative sensitivity strengths specified in the parameter sets employing only one of the reproducible parameter sets.

Suggested Citation

  • Kentaro Inoue, 2019. "Sensitivity analysis for reproducible candidate values of model parameters in signaling hub model," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-13, February.
  • Handle: RePEc:plo:pone00:0211654
    DOI: 10.1371/journal.pone.0211654
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211654
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0211654&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0211654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    2. Edward Kent & Stefan Neumann & Ursula Kummer & Pedro Mendes, 2013. "What Can We Learn from Global Sensitivity Analysis of Biochemical Systems?," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-13, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Elisha B Are & John W Hargrove, 2020. "Uncertainty and sensitivity analyses of extinction probabilities suggest that adult female mortality is the weakest link for populations of tsetse (Glossina spp)," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(5), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0211654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.