IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0079244.html
   My bibliography  Save this article

What Can We Learn from Global Sensitivity Analysis of Biochemical Systems?

Author

Listed:
  • Edward Kent
  • Stefan Neumann
  • Ursula Kummer
  • Pedro Mendes

Abstract

Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.

Suggested Citation

  • Edward Kent & Stefan Neumann & Ursula Kummer & Pedro Mendes, 2013. "What Can We Learn from Global Sensitivity Analysis of Biochemical Systems?," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0079244
    DOI: 10.1371/journal.pone.0079244
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0079244
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0079244&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0079244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Elisha B Are & John W Hargrove, 2020. "Uncertainty and sensitivity analyses of extinction probabilities suggest that adult female mortality is the weakest link for populations of tsetse (Glossina spp)," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(5), pages 1-16, May.
    3. Kentaro Inoue, 2019. "Sensitivity analysis for reproducible candidate values of model parameters in signaling hub model," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0079244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.