IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0209409.html
   My bibliography  Save this article

Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile

Author

Listed:
  • Ian J C MacCormick
  • Bryan M Williams
  • Yalin Zheng
  • Kun Li
  • Baidaa Al-Bander
  • Silvester Czanner
  • Rob Cheeseman
  • Colin E Willoughby
  • Emery N Brown
  • George L Spaeth
  • Gabriela Czanner

Abstract

Background: Glaucoma is the leading cause of irreversible blindness worldwide. It is a heterogeneous group of conditions with a common optic neuropathy and associated loss of peripheral vision. Both over and under-diagnosis carry high costs in terms of healthcare spending and preventable blindness. The characteristic clinical feature of glaucoma is asymmetrical optic nerve rim narrowing, which is difficult for humans to quantify reliably. Strategies to improve and automate optic disc assessment are therefore needed to prevent sight loss. Methods: We developed a novel glaucoma detection algorithm that segments and analyses colour photographs to quantify optic nerve rim consistency around the whole disc at 15-degree intervals. This provides a profile of the cup/disc ratio, in contrast to the vertical cup/disc ratio in common use. We introduce a spatial probabilistic model, to account for the optic nerve shape, we then use this model to derive a disc deformation index and a decision rule for glaucoma. We tested our algorithm on two separate image datasets (ORIGA and RIM-ONE). Results: The spatial algorithm accurately distinguished glaucomatous and healthy discs on internal and external validation (AUROC 99.6% and 91.0% respectively). It achieves this using a dataset 100-times smaller than that required for deep learning algorithms, is flexible to the type of cup and disc segmentation (automated or semi-automated), utilises images with missing data, and is correlated with the disc size (p = 0.02) and the rim-to-disc at the narrowest rim (p

Suggested Citation

  • Ian J C MacCormick & Bryan M Williams & Yalin Zheng & Kun Li & Baidaa Al-Bander & Silvester Czanner & Rob Cheeseman & Colin E Willoughby & Emery N Brown & George L Spaeth & Gabriela Czanner, 2019. "Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.
  • Handle: RePEc:plo:pone00:0209409
    DOI: 10.1371/journal.pone.0209409
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209409
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0209409&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0209409?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timothy D. Oleskiw & Amy Nowack & Anitha Pasupathy, 2018. "Joint coding of shape and blur in area V4," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    3. Larry J. Brant & Shan L. Sheng & Christopher H. Morrell & Geert N. Verbeke & Emmanuel Lesaffre & H. Ballentine Carter, 2003. "Screening for prostate cancer by using random‐effects models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(1), pages 51-62, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carles Serrat & Montserrat Ru� & Carmen Armero & Xavier Piulachs & H�ctor Perpi��n & Anabel Forte & �lvaro P�ez & Guadalupe G�mez, 2015. "Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal prostate-specific antigen data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1223-1239, June.
    2. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    3. Margaux Delporte & Steffen Fieuws & Geert Molenberghs & Geert Verbeke & Simeon Situma Wanyama & Elpis Hatziagorou & Christiane De Boeck, 2022. "A joint normal‐binary (probit) model," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 37-51, December.
    4. Hojin Jang & Frank Tong, 2024. "Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    6. Guillermo Marshall & Rolando De la Cruz-Mesía & Fernando A. Quintana & Anna E. Barón, 2009. "Discriminant Analysis for Longitudinal Data with Multiple Continuous Responses and Possibly Missing Data," Biometrics, The International Biometric Society, vol. 65(1), pages 69-80, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0209409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.