IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02438-8.html
   My bibliography  Save this article

Joint coding of shape and blur in area V4

Author

Listed:
  • Timothy D. Oleskiw

    (University of Washington
    University of Washington)

  • Amy Nowack

    (University of Washington)

  • Anitha Pasupathy

    (University of Washington)

Abstract

Edge blur, a prevalent feature of natural images, is believed to facilitate multiple visual processes including segmentation and depth perception. Furthermore, image descriptions that explicitly combine blur and shape information provide complete representations of naturalistic scenes. Here we report the first demonstration of blur encoding in primate visual cortex: neurons in macaque V4 exhibit tuning for both object shape and boundary blur, with observed blur tuning not explained by potential confounds including stimulus size, intensity, or curvature. A descriptive model wherein blur selectivity is cast as a distinct neural process that modulates the gain of shape-selective V4 neurons explains observed data, supporting the hypothesis that shape and blur are fundamental features of a sufficient neural code for natural image representation in V4.

Suggested Citation

  • Timothy D. Oleskiw & Amy Nowack & Anitha Pasupathy, 2018. "Joint coding of shape and blur in area V4," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02438-8
    DOI: 10.1038/s41467-017-02438-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02438-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02438-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hojin Jang & Frank Tong, 2024. "Improved modeling of human vision by incorporating robustness to blur in convolutional neural networks," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Ian J C MacCormick & Bryan M Williams & Yalin Zheng & Kun Li & Baidaa Al-Bander & Silvester Czanner & Rob Cheeseman & Colin E Willoughby & Emery N Brown & George L Spaeth & Gabriela Czanner, 2019. "Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02438-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.