IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208404.html
   My bibliography  Save this article

Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model

Author

Listed:
  • Yongbin Wang
  • Chunjie Xu
  • Zhende Wang
  • Shengkui Zhang
  • Ying Zhu
  • Juxiang Yuan

Abstract

Background: It is a daunting task to discontinue pertussis completely in China owing to its growing increase in the incidence. While basic to any formulation of prevention and control measures is early response for future epidemic trends. Discrete wavelet transform(DWT) has been emerged as a powerful tool in decomposing time series into different constituents, which facilitates better improvement in prediction accuracy. Thus we aim to integrate modeling approaches as a decision-making supportive tool for formulating health resources. Methods: We constructed a novel hybrid method based on the pertussis morbidity cases from January 2004 to May 2018 in China, where the approximations and details decomposed by DWT were forecasted by a seasonal autoregressive integrated moving average (SARIMA) and nonlinear autoregressive network (NAR), respectively. Then, the obtained values were aggregated as the final results predicted by the combined model. Finally, the performance was compared with the SARIMA, NAR and traditional SARIMA-NAR techniques. Results: The hybrid technique at level 2 of db2 wavelet including a SARIMA(0,1,3)(1,0,0)12modelfor the approximation-forecasting and NAR model with 12 hidden units and 4 delays for the detail d1-forecasting, along with another NAR model with 11 hidden units and 5 delays for the detail d2-forecasting notably outperformed other wavelets, SARIMA, NAR and traditional SARIMA-NAR techniques in terms of the mean square error, root mean square error, mean absolute error and mean absolute percentage error. Descriptive statistics exhibited that a substantial rise was observed in the notifications from 2013 to 2018, and there was an apparent seasonality with summer peak. Moreover, the trend was projected to continue upwards in the near future. Conclusions: This hybrid approach has an outstanding ability to improve the prediction accuracy relative to the others, which can be of great help in the prevention of pertussis. Besides, under current trend of pertussis morbidity, it is required to urgently address strategically within the proper policy adopted.

Suggested Citation

  • Yongbin Wang & Chunjie Xu & Zhende Wang & Shengkui Zhang & Ying Zhu & Juxiang Yuan, 2018. "Time series modeling of pertussis incidence in China from 2004 to 2018 with a novel wavelet based SARIMA-NAR hybrid model," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0208404
    DOI: 10.1371/journal.pone.0208404
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208404
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208404&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pao, H.T., 2009. "Forecasting energy consumption in Taiwan using hybrid nonlinear models," Energy, Elsevier, vol. 34(10), pages 1438-1446.
    2. Wei Wu & Junqiao Guo & Shuyi An & Peng Guan & Yangwu Ren & Linzi Xia & Baosen Zhou, 2015. "Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekinci, Aykut, 2021. "Modelling and forecasting of growth rate of new COVID-19 cases in top nine affected countries: Considering conditional variance and asymmetric effect," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Movagharnejad, Kamyar & Mehdizadeh, Bahman & Banihashemi, Morteza & Kordkheili, Masoud Sheikhi, 2011. "Forecasting the differences between various commercial oil prices in the Persian Gulf region by neural network," Energy, Elsevier, vol. 36(7), pages 3979-3984.
    3. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    4. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    5. Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
    6. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    7. Adedayo Ajayi & Patrick Chi-Kwong Luk & Liyun Lao & Mohammad Farhan Khan, 2023. "Energy Forecasting Model for Ground Movement Operation in Green Airport," Energies, MDPI, vol. 16(13), pages 1-19, June.
    8. Cai, Wei & Liu, Fei & Xie, Jun & Liu, Peiji & Tuo, Junbo, 2017. "A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking," Energy, Elsevier, vol. 138(C), pages 332-347.
    9. Wu, Xuedong & Mao, Jianxu & Du, Zhaoping & Chang, Yanchao, 2013. "Online training algorithms based single multiplicative neuron model for energy consumption forecasting," Energy, Elsevier, vol. 59(C), pages 126-132.
    10. Najia Saqib, 2021. "Energy Consumption and Economic Growth: Empirical Evidence from MENA Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 191-197.
    11. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    12. Yuehjen E. Shao & Yi-Shan Tsai, 2018. "Electricity Sales Forecasting Using Hybrid Autoregressive Integrated Moving Average and Soft Computing Approaches in the Absence of Explanatory Variables," Energies, MDPI, vol. 11(7), pages 1-22, July.
    13. Agbessi Akuété Pierre & Salami Adekunlé Akim & Agbosse Kodjovi Semenyo & Birregah Babiga, 2023. "Peak Electrical Energy Consumption Prediction by ARIMA, LSTM, GRU, ARIMA-LSTM and ARIMA-GRU Approaches," Energies, MDPI, vol. 16(12), pages 1-12, June.
    14. Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    16. E, Jianwei & Ye, Jimin & He, Lulu & Jin, Haihong, 2019. "Energy price prediction based on independent component analysis and gated recurrent unit neural network," Energy, Elsevier, vol. 189(C).
    17. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    19. Mason, Karl & Duggan, Jim & Howley, Enda, 2018. "Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks," Energy, Elsevier, vol. 155(C), pages 705-720.
    20. Hong, Wei-Chiang, 2011. "Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm," Energy, Elsevier, vol. 36(9), pages 5568-5578.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.