IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0205974.html
   My bibliography  Save this article

Forget-me-some: General versus special purpose models in a hierarchical probabilistic task

Author

Listed:
  • Franziska Bröker
  • Louise Marshall
  • Sven Bestmann
  • Peter Dayan

Abstract

Humans build models of their environments and act according to what they have learnt. In simple experimental environments, such model-based behaviour is often well accounted for as if subjects are ideal Bayesian observers. However, more complex probabilistic tasks require more sophisticated forms of inference that are sufficiently computationally and statistically taxing as to demand approximation. Here, we study properties of two approximation schemes in the context of a serial reaction time task in which stimuli were generated from a hierarchical Markov chain. One, pre-existing, scheme was a generically powerful variational method for hierarchical inference which has recently become popular as an account of psychological and neural data across a wide swathe of probabilistic tasks. A second, novel, scheme was more specifically tailored to the task at hand. We show that the latter model fit significantly better than the former. This suggests that our subjects were sensitive to many of the particular constraints of a complex behavioural task. Further, the tailored model provided a different perspective on the effects of cholinergic manipulations in the task. Neither model fit the behaviour on more complex contingencies that competently. These results illustrate the benefits and challenges that come with the general and special purpose modelling approaches and raise important questions of how they can advance our current understanding of learning mechanisms in the brain.

Suggested Citation

  • Franziska Bröker & Louise Marshall & Sven Bestmann & Peter Dayan, 2018. "Forget-me-some: General versus special purpose models in a hierarchical probabilistic task," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-22, October.
  • Handle: RePEc:plo:pone00:0205974
    DOI: 10.1371/journal.pone.0205974
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205974
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0205974&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0205974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter M C Harrison & Roberta Bianco & Maria Chait & Marcus T Pearce, 2020. "PPM-Decay: A computational model of auditory prediction with memory decay," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-41, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    2. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    3. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.
    4. Flavia Mancini & Suyi Zhang & Ben Seymour, 2022. "Computational and neural mechanisms of statistical pain learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    6. Peter M C Harrison & Roberta Bianco & Maria Chait & Marcus T Pearce, 2020. "PPM-Decay: A computational model of auditory prediction with memory decay," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-41, November.
    7. Matthias Fritsche & Antara Majumdar & Lauren Strickland & Samuel Liebana Garcia & Rafal Bogacz & Armin Lak, 2024. "Temporal regularities shape perceptual decisions and striatal dopamine signals," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0205974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.