IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0204849.html
   My bibliography  Save this article

HCF-CRS: A Hybrid Content based Fuzzy Conformal Recommender System for providing recommendations with confidence

Author

Listed:
  • Sundus Ayyaz
  • Usman Qamar
  • Raheel Nawaz

Abstract

A Recommender System (RS) is an intelligent system that assists users in finding the items of their interest (e.g. books, movies, music) by preventing them to go through huge piles of data available online. In an effort to overcome the data sparsity issue in recommender systems, this research incorporates a content based filtering technique with fuzzy inference system and a conformal prediction approach introducing a new framework called Hybrid Content based Fuzzy Conformal Recommender System (HCF-CRS). The proposed framework is implemented to be used in the domain of movies and it provides quality recommendations to users with a confidence level and an improved accuracy. In our proposed framework, first, a Content Based Filtering (CBF) technique is applied to create a user profile by considering the history of each user. CBF is useful in the situations like: lack of demographic information and the data sparsity problems. Second, a Fuzzy based technique is incorporated to find the similarities and differences between the user profile and the movies in the dataset using a set of fuzzy rules to get a predicted rating for each movie. Third, a Conformal prediction algorithm is implemented to calculate the non-conformity measure between the predicted ratings produced by fuzzy system and the actual ratings from the dataset. A p-value (confidence measure) is computed to give a level of confidence to each recommended item and a bound is set on the confidence level called a significance level ε, according to which the movies only above the specified significance level are recommended to user. By building a confidence centric hybrid conformal recommender system using the content based filtering approach with fuzzy logic and conformal prediction algorithm, the reliability and the accuracy of the system is considerably enhanced. The experiments are evaluated on MovieLens and Movie Tweetings datasets for recommending movies to the users and they are compared with other state-of-the-art recommender systems. Finally, the results confirm that the proposed algorithms perform better than the traditional ones.

Suggested Citation

  • Sundus Ayyaz & Usman Qamar & Raheel Nawaz, 2018. "HCF-CRS: A Hybrid Content based Fuzzy Conformal Recommender System for providing recommendations with confidence," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-30, October.
  • Handle: RePEc:plo:pone00:0204849
    DOI: 10.1371/journal.pone.0204849
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204849
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204849&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0204849?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katarya, Rahul & Verma, Om Prakash, 2016. "Recent developments in affective recommender systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 182-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahira Ahmad & Amina Muazzam & Ambreen Anjum & Anna Visvizi & Raheel Nawaz, 2020. "Linking Work-Family Conflict (WFC) and Talent Management: Insights from a Developing Country," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    2. Bisma Ejaz & Amina Muazzam & Ambreen Anjum & Gary Pollock & Raheel Nawaz, 2020. "Measuring the Scale and Scope of Social Anxiety among Students in Pakistani Higher Education Institutions: An Alternative Social Anxiety Scale," Sustainability, MDPI, vol. 12(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    2. S. Bhaskaran & Raja Marappan & B. Santhi, 2020. "Design and Comparative Analysis of New Personalized Recommender Algorithms with Specific Features for Large Scale Datasets," Mathematics, MDPI, vol. 8(7), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0204849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.