IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0201173.html
   My bibliography  Save this article

Multivariate analysis of genomics data to identify potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach

Author

Listed:
  • Yuan-Cheng Chen
  • Chao Xu
  • Ji-Gang Zhang
  • Chun-Ping Zeng
  • Xia-Fang Wang
  • Rou Zhou
  • Xu Lin
  • Zeng-Xin Ao
  • Jun-Min Lu
  • Jie Shen
  • Hong-Wen Deng

Abstract

Previous studies have demonstrated the genetic correlations between type 2 diabetes, obesity and dyslipidemia, and indicated that many genes have pleiotropic effects on them. However, these pleiotropic genes have not been well-defined. It is essential to identify pleiotropic genes using systematic approaches because systematically analyzing correlated traits is an effective way to enhance their statistical power. To identify potential pleiotropic genes for these three disorders, we performed a systematic analysis by incorporating GWAS (genome-wide associated study) datasets of six correlated traits related to type 2 diabetes, obesity and dyslipidemia using Meta-CCA (meta-analysis using canonical correlation analysis). Meta-CCA is an emerging method to systematically identify potential pleiotropic genes using GWAS summary statistics of multiple correlated traits. 2,720 genes were identified as significant genes after multiple testing (Bonferroni corrected p value

Suggested Citation

  • Yuan-Cheng Chen & Chao Xu & Ji-Gang Zhang & Chun-Ping Zeng & Xia-Fang Wang & Rou Zhou & Xu Lin & Zeng-Xin Ao & Jun-Min Lu & Jie Shen & Hong-Wen Deng, 2018. "Multivariate analysis of genomics data to identify potential pleiotropic genes for type 2 diabetes, obesity and dyslipidemia using Meta-CCA and gene-based approach," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0201173
    DOI: 10.1371/journal.pone.0201173
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201173
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0201173&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0201173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan-Wei Yin & Qian-Qian Sun & Pei-Jian Wang & Li Qiao & Ai-Min Hu & Hong-Li Liu & Qi Wang & Zhi-Zhen Hou, 2014. "Genetic Polymorphism of Apolipoprotein A5 Gene and Susceptibility to Type 2 Diabetes Mellitus: A Meta-Analysis of 15,137 Subjects," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    2. Shashaank Vattikuti & Juen Guo & Carson C Chow, 2012. "Heritability and Genetic Correlations Explained by Common SNPs for Metabolic Syndrome Traits," PLOS Genetics, Public Library of Science, vol. 8(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Matthew Reimherr & Dan Nicolae, 2016. "Estimating Variance Components in Functional Linear Models With Applications to Genetic Heritability," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 407-422, March.
    3. Nora Franceschini & Cara L Carty & Yingchang Lu & Ran Tao & Yun Ju Sung & Ani Manichaikul & Jeff Haessler & Myriam Fornage & Karen Schwander & Niha Zubair & Stephanie Bien & Lucia A Hindorff & Xiuqing, 2016. "Variant Discovery and Fine Mapping of Genetic Loci Associated with Blood Pressure Traits in Hispanics and African Americans," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    4. Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022. "The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Guanghao Qi & Nilanjan Chatterjee, 2018. "Heritability informed power optimization (HIPO) leads to enhanced detection of genetic associations across multiple traits," PLOS Genetics, Public Library of Science, vol. 14(10), pages 1-21, October.
    6. Boran Gao & Can Yang & Jin Liu & Xiang Zhou, 2021. "Accurate genetic and environmental covariance estimation with composite likelihood in genome-wide association studies," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-25, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0201173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.