An improved DBSCAN algorithm based on cell-like P systems with promoters and inhibitors
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0200751
Download full text from publisher
References listed on IDEAS
- Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni De Luca & Paola Zuccolotto, 2021. "Regime dependent interconnectedness among fuzzy clusters of financial time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 315-336, June.
- Xin Liu & Jiang Wu & Chen Yang & Wenjun Jiang, 2018. "A Maximal Tail Dependence-Based Clustering Procedure for Financial Time Series and Its Applications in Portfolio Selection," Risks, MDPI, vol. 6(4), pages 1-26, October.
- De Luca Giovanni & Zuccolotto Paola, 2017. "A double clustering algorithm for financial time series based on extreme events," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 1-12, June.
- Aloui, Riadh & Ben Jabeur, Sami & Mefteh-Wali, Salma, 2022. "Tail-risk spillovers from China to G7 stock market returns during the COVID-19 outbreak: A market and sectoral analysis," Research in International Business and Finance, Elsevier, vol. 62(C).
- Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
- Chen Yang & Wenjun Jiang & Jiang Wu & Xin Liu & Zhichuan Li, 2018. "Clustering of financial instruments using jump tail dependence coefficient," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 491-513, August.
- Chen, Wei & Qu, Shuai & Jiang, Manrui & Jiang, Cheng, 2021. "The construction of multilayer stock network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
- Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
- Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Francesca Mariani & Gloria Polinesi & Maria Cristina Recchioni, 2022. "A tail-revisited Markowitz mean-variance approach and a portfolio network centrality," Computational Management Science, Springer, vol. 19(3), pages 425-455, July.
- B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
- Paolo Onorati & Brunero Liseo, 2022. "Bayesian Hierarchical Copula Models with a Dirichlet–Laplace Prior," Stats, MDPI, vol. 5(4), pages 1-17, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200751. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.