IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i4p115-d174402.html
   My bibliography  Save this article

A Maximal Tail Dependence-Based Clustering Procedure for Financial Time Series and Its Applications in Portfolio Selection

Author

Listed:
  • Xin Liu

    (School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Jiang Wu

    (School of Economics, Central University of Finance and Economics, Beijing 100081, China)

  • Chen Yang

    (Department of Insurance and Actuary, Wuhan University, Wuhan 430072, Hubei, China)

  • Wenjun Jiang

    (Department of Statistical and Actuarial Sciences, University of Western Ontario, London, ON N6A 5B7, Canada)

Abstract

In this paper, we propose a clustering procedure of financial time series according to the coefficient of weak lower-tail maximal dependence (WLTMD). Due to the potential asymmetry of the matrix of WLTMD coefficients, the clustering procedure is based on a generalized weighted cuts method instead of the dissimilarity-based methods. The performance of the new clustering procedure is evaluated by simulation studies. Finally, we illustrate that the optimal mean-variance portfolio constructed based on the resulting clusters manages to reduce the risk of simultaneous large losses effectively.

Suggested Citation

  • Xin Liu & Jiang Wu & Chen Yang & Wenjun Jiang, 2018. "A Maximal Tail Dependence-Based Clustering Procedure for Financial Time Series and Its Applications in Portfolio Selection," Risks, MDPI, vol. 6(4), pages 1-26, October.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:115-:d:174402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/4/115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/4/115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    2. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    3. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    4. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    5. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    6. Marcello Pericoli & Massimo Sbracia, 2003. "A Primer on Financial Contagion," Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 571-608, September.
    7. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    8. Laura L. Veldkamp, 2006. "Information Markets and the Comovement of Asset Prices," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(3), pages 823-845.
    9. Billio, Monica & Caporin, Massimiliano, 2009. "A generalized Dynamic Conditional Correlation model for portfolio risk evaluation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2566-2578.
    10. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    11. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    12. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    13. Furman, Edward & Kuznetsov, Alexey & Su, Jianxi & Zitikis, Ričardas, 2016. "Tail dependence of the Gaussian copula revisited," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 97-103.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    16. Furman, Edward & Su, Jianxi & Zitikis, Ričardas, 2015. "Paths And Indices Of Maximal Tail Dependence," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 661-678, September.
    17. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Mariani & Gloria Polinesi & Maria Cristina Recchioni, 2022. "A tail-revisited Markowitz mean-variance approach and a portfolio network centrality," Computational Management Science, Springer, vol. 19(3), pages 425-455, July.
    2. Giovanni De Luca & Paola Zuccolotto, 2021. "Regime dependent interconnectedness among fuzzy clusters of financial time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 315-336, June.
    3. Jiandong Ren & Kristina Sendova & Ričardas Zitikis, 2019. "Special Issue “Risk, Ruin and Survival: Decision Making in Insurance and Finance”," Risks, MDPI, vol. 7(3), pages 1-7, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Mariani & Gloria Polinesi & Maria Cristina Recchioni, 2022. "A tail-revisited Markowitz mean-variance approach and a portfolio network centrality," Computational Management Science, Springer, vol. 19(3), pages 425-455, July.
    2. Chen Yang & Wenjun Jiang & Jiang Wu & Xin Liu & Zhichuan Li, 2018. "Clustering of financial instruments using jump tail dependence coefficient," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 491-513, August.
    3. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    4. Emerson Fernandes Marcal & Pedro Valls Pereira & Diogenes Manoel Leiva Martin & Wilson Toshiro Nakamura, 2011. "Evaluation of contagion or interdependence in the financial crises of Asia and Latin America, considering the macroeconomic fundamentals," Applied Economics, Taylor & Francis Journals, vol. 43(19), pages 2365-2379.
    5. Mollah, Sabur & Zafirov, Goran & Quoreshi, AMM Shahiduzzaman, 2014. "Financial Market Contagion during the Global Financial Crisis," Working Papers 2014/05, Blekinge Institute of Technology, Department of Industrial Economics.
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Coudert, Virginie & Gex, Mathieu, 2010. "Contagion inside the credit default swaps market: The case of the GM and Ford crisis in 2005," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(2), pages 109-134, April.
    8. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2015. "Clustering of time series via non-parametric tail dependence estimation," Statistical Papers, Springer, vol. 56(3), pages 701-721, August.
    9. Fuchs, Sebastian & Di Lascio, F. Marta L. & Durante, Fabrizio, 2021. "Dissimilarity functions for rank-invariant hierarchical clustering of continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    10. Zouheir Mighri & Faysal Mansouri, 2013. "Dynamic Conditional Correlation Analysis of Stock Market Contagion: Evidence from the 2007-2010 Financial Crises," International Journal of Economics and Financial Issues, Econjournals, vol. 3(3), pages 637-661.
    11. Campos-Martins, Susana & Amado, Cristina, 2022. "Financial market linkages and the sovereign debt crisis," Journal of International Money and Finance, Elsevier, vol. 123(C).
    12. Charles Ka Yui Leung & Patrick Wai Yin Cheung & Edward Chi Ho Tang, 2013. "Financial Crisis and the Co-movements of Housing Sub-markets: Do relationships change after a crisis?," International Real Estate Review, Global Social Science Institute, vol. 16(1), pages 68-118.
    13. Maximilian-Benedikt Herwarth Kohn & Pedro L. Valls Pereira, 2017. "Speculative bubbles and contagion: Analysis of volatility’s clusters during the DotCom bubble based on the dynamic conditional correlation model," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1411453-141, January.
    14. Bampinas, Georgios & Panagiotidis, Theodore & Politsidis, Panagiotis N., 2023. "Sovereign bond and CDS market contagion: A story from the Eurozone crisis," Journal of International Money and Finance, Elsevier, vol. 137(C).
    15. Irena Vodenska & Alexander P. Becker & Di Zhou & Dror Y. Kenett & H. Eugene Stanley & Shlomo Havlin, 2016. "Community Analysis of Global Financial Markets," Risks, MDPI, vol. 4(2), pages 1-15, May.
    16. Andreas Chouliaras & Theoharry Grammatikos, 2017. "Extreme Returns in the European financial crisis," European Financial Management, European Financial Management Association, vol. 23(4), pages 728-760, September.
    17. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    18. Hyde, Stuart J & Bredin, Don P & Nguyen, Nghia, 2007. "Correlation dynamics between Asia-Pacific, EU and US stock returns," MPRA Paper 9681, University Library of Munich, Germany.
    19. Kim, Bong-Han & Kim, Hyeongwoo & Lee, Bong-Soo, 2015. "Spillover effects of the U.S. financial crisis on financial markets in emerging Asian countries," International Review of Economics & Finance, Elsevier, vol. 39(C), pages 192-210.
    20. Giovanni De Luca & Paola Zuccolotto, 2021. "Regime dependent interconnectedness among fuzzy clusters of financial time series," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 315-336, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:4:p:115-:d:174402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.