IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0200123.html
   My bibliography  Save this article

Using clustered data to develop biomass allometric models: The consequences of ignoring the clustered data structure

Author

Listed:
  • Ioan Dutcă
  • Petru Tudor Stăncioiu
  • Ioan Vasile Abrudan
  • Florin Ioraș

Abstract

This paper investigates the consequences of ignoring the clustered data structure on allometric models. Clustered data, in the form of multiple trees sampled from multiple forest stands is commonly used to develop biomass allometric models. Of 102 reviewed papers published between 2012 and 2016 that reported biomass allometric models, 84 (82%) have used a clustered sampling design. However, in as many as 80% of these, the clustered data structure was ignored, potentially violating the independence assumption in ordinary least squares methods. The consequences of ignoring clustered data structure were empirically validated using two clustered biomass datasets (of 110 and 220 trees, with the cluster size of 5 and 10 trees respectively). We showed that when Intraclass Correlation Coefficient (ICC) was higher than zero, ignoring the clustered data structure returned underestimated standard errors, affecting further the confidence interval and t-test results. The underestimation level depended on ICC (which shows the variance proportion that was caused by the forest stand) and on cluster size (the number of trees sampled from one forest stand). We also showed that using first-order autocorrelation tests, such as the traditional Durbin-Watson statistic, to detect the autocorrelation due to clustered structure could be misleading as the test may show lack of autocorrelation even though ICC is different from zero. In conclusion, when ICC is higher than zero, ignoring the clustered data structure yields over-confident biomass predictions (due to underestimated confidence interval) and/or incorrect research conclusions (due to overestimated evidence against null hypothesis in t-test). Therefore, using a modelling approach that accounts for the hierarchical structure of the data is highly recommended when any form of clustering can be identified, even if the autocorrelation is not significant.

Suggested Citation

  • Ioan Dutcă & Petru Tudor Stăncioiu & Ioan Vasile Abrudan & Florin Ioraș, 2018. "Using clustered data to develop biomass allometric models: The consequences of ignoring the clustered data structure," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
  • Handle: RePEc:plo:pone00:0200123
    DOI: 10.1371/journal.pone.0200123
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200123
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0200123&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0200123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 1997. "A General Model for the Origin of Allometric Scaling Laws in Biology," Working Papers 97-03-019, Santa Fe Institute.
    2. Cora J. M. Maas & Joop J. Hox, 2004. "Robustness issues in multilevel regression analysis," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 127-137, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    2. D. Gunzler & W. Tang & N. Lu & P. Wu & X. Tu, 2014. "A Class of Distribution-Free Models for Longitudinal Mediation Analysis," Psychometrika, Springer;The Psychometric Society, vol. 79(4), pages 543-568, October.
    3. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    4. Giannetti, Biagio F. & Marcilio, Maria De Fatima D.F.B. & Coscieme, Luca & Agostinho, Feni & Liu, Gengyuan & Almeida, Cecilia M.V.B., 2019. "Howard Odum’s “Self-organization, transformity and information”: Three decades of empirical evidence," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    5. Arpino, Bruno & Varriale, Roberta, 2009. "Assessing the quality of institutions’ rankings obtained through multilevel linear regression models," MPRA Paper 19873, University Library of Munich, Germany.
    6. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    7. He, Ji-Huan & Liu, Jun-Fang, 2009. "Allometric scaling laws in biology and physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1836-1838.
    8. Francesco Aiello & Graziella Bonanno & Stefania P. S. Rossi, 2020. "How firms finance innovation. Further empirics from European SMEs," Metroeconomica, Wiley Blackwell, vol. 71(4), pages 689-714, November.
    9. McMahon, James M. & Pouget, Enrique R. & Tortu, Stephanie, 2006. "A guide for multilevel modeling of dyadic data with binary outcomes using SAS PROC NLMIXED," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3663-3680, August.
    10. Maciej Jakubowski, 2007. "Efektywność wydatków na gimnazja," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 11-12, pages 85-113.
    11. Christos Makriyannis, 2023. "How the Biophysical Paradigm Impedes the Scientific Advancement of Ecological Economics: A Transdisciplinary Analysis," Sustainability, MDPI, vol. 15(23), pages 1-24, November.
    12. Mikami, Satoru & Furukawa, Mitsuaki, 2014. "An Empirical Study of the Conditions for Successful Knowledge Transfer in Training Programs," Working Papers 85, JICA Research Institute.
    13. Hennessy, David A., 2006. "Feeding and the Equilibrium Feeder Animal Price-Weight Schedule," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(2), pages 1-23, August.
    14. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    15. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
    16. J. Sylvan Katz & Guillermo Armando Ronda-Pupo, 2019. "Cooperation, scale-invariance and complex innovation systems: a generalization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1045-1065, November.
    17. JaeYoul Shin, 2018. "Relative Deprivation, Satisfying Rationality, and Support for Redistribution," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 140(1), pages 35-56, November.
    18. Ferraccioli, Federico & Sangalli, Laura M. & Finos, Livio, 2022. "Some first inferential tools for spatial regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Brinkley, Catherine & Raj, Subhashni, 2022. "Perfusion and urban thickness: The shape of cities," Land Use Policy, Elsevier, vol. 115(C).
    20. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0200123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.