IDEAS home Printed from https://ideas.repec.org/a/spr/sorede/v30y2019i5d10.1134_s1075700719050034.html
   My bibliography  Save this article

Short-Term Inflation Projection Based on Marker Models

Author

Listed:
  • E. V. Balatskii

    (Central Economics and Mathematics Institute, Russian Academy of Sciences)

  • N. A. Ekimova

    (Financial University under the Government of the Russian Federation)

  • M. A. Yurevich

    (Financial University under the Government of the Russian Federation)

Abstract

The article proposes a hybrid model for inflation projection that combines econometric and neural network models. At the same time, both factor variables and market markers of consumer price index growth are used as explanatory variables. It has been shown that such an approach makes it possible both to maintain the theoretical fullness of the model and to ensure high accuracy of calculations, which is unattainable when using only one type of model toolkit.

Suggested Citation

  • E. V. Balatskii & N. A. Ekimova & M. A. Yurevich, 2019. "Short-Term Inflation Projection Based on Marker Models," Studies on Russian Economic Development, Springer, vol. 30(5), pages 498-506, September.
  • Handle: RePEc:spr:sorede:v:30:y:2019:i:5:d:10.1134_s1075700719050034
    DOI: 10.1134/S1075700719050034
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1134/S1075700719050034
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1134/S1075700719050034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ömer Özgür Bozkurt & Göksel Biricik & Ziya Cihan Tayşi, 2017. "Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nyoni, Thabani, 2019. "Modeling and forecasting demand for electricity in Zimbabwe using the Box-Jenkins ARIMA technique," MPRA Paper 96903, University Library of Munich, Germany.
    2. Samer Chaaraoui & Matthias Bebber & Stefanie Meilinger & Silvan Rummeny & Thorsten Schneiders & Windmanagda Sawadogo & Harald Kunstmann, 2021. "Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms," Energies, MDPI, vol. 14(2), pages 1-22, January.
    3. Davut Solyali, 2020. "A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus," Sustainability, MDPI, vol. 12(9), pages 1-34, April.
    4. Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Lianhui Li & Hongguang Wang, 2018. "A VVWBO-BVO-based GM (1,1) and its parameter optimization by GRA-IGSA integration algorithm for annual power load forecasting," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    7. Siti Aisyah & Arionmaro Asi Simaremare & Didit Adytia & Indra A. Aditya & Andry Alamsyah, 2022. "Exploratory Weather Data Analysis for Electricity Load Forecasting Using SVM and GRNN, Case Study in Bali, Indonesia," Energies, MDPI, vol. 15(10), pages 1-17, May.
    8. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    9. Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
    10. Jun-Lin Lin & Yiqing Zhang & Kunhuang Zhu & Binbin Chen & Feng Zhang, 2020. "Asymmetric Loss Functions for Contract Capacity Optimization," Energies, MDPI, vol. 13(12), pages 1-13, June.
    11. Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
    12. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sorede:v:30:y:2019:i:5:d:10.1134_s1075700719050034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.