IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0196148.html
   My bibliography  Save this article

Mapping genetic variants for cranial vault shape in humans

Author

Listed:
  • Jasmien Roosenboom
  • Myoung Keun Lee
  • Jacqueline T Hecht
  • Carrie L Heike
  • George L Wehby
  • Kaare Christensen
  • Eleanor Feingold
  • Mary L Marazita
  • A Murat Maga
  • John R Shaffer
  • Seth M Weinberg

Abstract

The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the genetic basis of normal vault shape in humans. We performed a genome-wide association study (GWAS) on three vault measures (maximum cranial width [MCW], maximum cranial length [MCL], and cephalic index [CI]) in a sample of 4419 healthy individuals of European ancestry. All measures were adjusted by sex, age, and body size, then tested for association with genetic variants spanning the genome. GWAS results for the two cohorts were combined via meta-analysis. Significant associations were observed at two loci: 15p11.2 (lead SNP rs2924767, p = 2.107 × 10−8) for MCW and 17q11.2 (lead SNP rs72841279, p = 5.29 × 10−9) for MCL. Additionally, 32 suggestive loci (p

Suggested Citation

  • Jasmien Roosenboom & Myoung Keun Lee & Jacqueline T Hecht & Carrie L Heike & George L Wehby & Kaare Christensen & Eleanor Feingold & Mary L Marazita & A Murat Maga & John R Shaffer & Seth M Weinberg, 2018. "Mapping genetic variants for cranial vault shape in humans," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0196148
    DOI: 10.1371/journal.pone.0196148
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0196148
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0196148&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0196148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pallavi Bhattaram & Alfredo Penzo-Méndez & Elisabeth Sock & Clemencia Colmenares & Kotaro J. Kaneko & Alex Vassilev & Melvin L. DePamphilis & Michael Wegner & Véronique Lefebvre, 2010. "Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors," Nature Communications, Nature, vol. 1(1), pages 1-12, December.
    2. Bryan N Howie & Peter Donnelly & Jonathan Marchini, 2009. "A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 5(6), pages 1-15, June.
    3. Daisuke Koyabu & Ingmar Werneburg & Naoki Morimoto & Christoph P. E. Zollikofer & Analia M. Forasiepi & Hideki Endo & Junpei Kimura & Satoshi D. Ohdachi & Nguyen Truong Son & Marcelo R. Sánchez-Villag, 2014. "Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seppe Goovaerts & Hanne Hoskens & Ryan J. Eller & Noah Herrick & Anthony M. Musolf & Cristina M. Justice & Meng Yuan & Sahin Naqvi & Myoung Keun Lee & Dirk Vandermeulen & Heather L. Szabo-Rogers & Pau, 2023. "Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    2. Chuan Gao & Nan Wang & Xiuqing Guo & Julie T Ziegler & Kent D Taylor & Anny H Xiang & Yang Hai & Steven J Kridel & Jerry L Nadler & Fouad Kandeel & Leslie J Raffel & Yii-Der I Chen & Jill M Norris & J, 2015. "A Comprehensive Analysis of Common and Rare Variants to Identify Adiposity Loci in Hispanic Americans: The IRAS Family Study (IRASFS)," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-17, November.
    3. Bieke Decaesteker & Amber Louwagie & Siebe Loontiens & Fanny De Vloed & Sarah-Lee Bekaert & Juliette Roels & Suzanne Vanhauwaert & Sara De Brouwer & Ellen Sanders & Alla Berezovskaya & Geertrui Deneck, 2023. "SOX11 regulates SWI/SNF complex components as member of the adrenergic neuroblastoma core regulatory circuitry," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Paul S de Vries & Maria Sabater-Lleal & Daniel I Chasman & Stella Trompet & Tarunveer S Ahluwalia & Alexander Teumer & Marcus E Kleber & Ming-Huei Chen & Jie Jin Wang & John R Attia & Riccardo E Mario, 2017. "Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-22, January.
    5. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    6. Rakesh Chettier & Lesa Nelson & James W Ogilvie & Hans M Albertsen & Kenneth Ward, 2015. "Haplotypes at LBX1 Have Distinct Inheritance Patterns with Opposite Effects in Adolescent Idiopathic Scoliosis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-11, February.
    7. Michel S. Naslavsky & Marilia O. Scliar & Guilherme L. Yamamoto & Jaqueline Yu Ting Wang & Stepanka Zverinova & Tatiana Karp & Kelly Nunes & José Ricardo Magliocco Ceroni & Diego Lima Carvalho & Carlo, 2022. "Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    9. Anshuman Sewda & A J Agopian & Elizabeth Goldmuntz & Hakon Hakonarson & Bernice E Morrow & Fadi Musfee & Deanne Taylor & Laura E Mitchell & on behalf of the Pediatric Cardiac Genomics Consortium, 2020. "Gene-based analyses of the maternal genome implicate maternal effect genes as risk factors for conotruncal heart defects," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-15, June.
    10. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    11. Carl Nettelblad, 2013. "Breakdown of Methods for Phasing and Imputation in the Presence of Double Genotype Sharing," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-5, March.
    12. Viinikainen, Jutta & Bryson, Alex & Böckerman, Petri & Kari, Jaana T. & Lehtimäki, Terho & Raitakari, Olli & Viikari, Jorma & Pehkonen, Jaakko, 2022. "Does better education mitigate risky health behavior? A mendelian randomization study," Economics & Human Biology, Elsevier, vol. 46(C).
    13. Cavin K Ward-Caviness & Paul S de Vries & Kerri L Wiggins & Jennifer E Huffman & Lisa R Yanek & Lawrence F Bielak & Franco Giulianini & Xiuqing Guo & Marcus E Kleber & Tim Kacprowski & Stefan Groß & A, 2019. "Mendelian randomization evaluation of causal effects of fibrinogen on incident coronary heart disease," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-18, May.
    14. Keira J A Johnston & Joey Ward & Pradipta R Ray & Mark J Adams & Andrew M McIntosh & Blair H Smith & Rona J Strawbridge & Theodore J Price & Daniel J Smith & Barbara I Nicholl & Mark E S Bailey, 2021. "Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank," PLOS Genetics, Public Library of Science, vol. 17(4), pages 1-27, April.
    15. Ani Manichaikul & Xin-Qun Wang & Solomon K Musani & David M Herrington & Wendy S Post & James G Wilson & Stephen S Rich & Annabelle Rodriguez, 2015. "Association of the Lipoprotein Receptor SCARB1 Common Missense Variant rs4238001 with Incident Coronary Heart Disease," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    16. Morten Dybdahl Krebs & Gonçalo Espregueira Themudo & Michael Eriksen Benros & Ole Mors & Anders D. Børglum & David Hougaard & Preben Bo Mortensen & Merete Nordentoft & Michael J. Gandal & Chun Chieh F, 2021. "Associations between patterns in comorbid diagnostic trajectories of individuals with schizophrenia and etiological factors," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    17. Heejung Shim & Daniel I Chasman & Joshua D Smith & Samia Mora & Paul M Ridker & Deborah A Nickerson & Ronald M Krauss & Matthew Stephens, 2015. "A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their Response to Statin Treatment, in 1868 Caucasians," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-20, April.
    18. Mette K Andersen & Emil Jørsboe & Line Skotte & Kristian Hanghøj & Camilla H Sandholt & Ida Moltke & Niels Grarup & Timo Kern & Yuvaraj Mahendran & Bolette Søborg & Peter Bjerregaard & Christina V L L, 2020. "The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders," PLOS Genetics, Public Library of Science, vol. 16(1), pages 1-17, January.
    19. Gianmarco Mignogna & Caitlin E. Carey & Robbee Wedow & Nikolas Baya & Mattia Cordioli & Nicola Pirastu & Rino Bellocco & Kathryn Fiuza Malerbi & Michel G. Nivard & Benjamin M. Neale & Raymond K. Walte, 2023. "Patterns of item nonresponse behaviour to survey questionnaires are systematic and associated with genetic loci," Nature Human Behaviour, Nature, vol. 7(8), pages 1371-1387, August.
    20. Xiaodong Cai & Juan Andrés Bazerque & Georgios B Giannakis, 2013. "Inference of Gene Regulatory Networks with Sparse Structural Equation Models Exploiting Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0196148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.