IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0194806.html
   My bibliography  Save this article

Empirical approach to threshold determination for the delineation of built-up areas with road network data

Author

Listed:
  • Qi Zhou
  • Lei Guo

Abstract

Various approaches have been proposed to address the delineation of built-up areas for a wide range of applications. Recently developed approaches are based on the increasing availability of road network data. However, most approaches have employed one or more parameters to divide built-up from non-built-up areas. Very few studies have discussed how to determine appropriate thresholds for such parameters. This study employed an empirical approach for threshold determination, and validated that the approach is applicable for the delineation of built-up areas using road network data. A series of experiments were designed to investigate the most-appropriate thresholds (determined using a similarity measure) for multiple parameters of three existing approaches (street blocks, grid-based, and kernel density) with regard to different administrative regions and cities/towns. The results show that in most cases, the most-appropriate thresholds or ranges for different subdivisions are either identical or overlap—thus validating the use of the most-appropriate thresholds to delineate built-up areas for one or multiple small subdivisions and, by inference, for a much larger region.

Suggested Citation

  • Qi Zhou & Lei Guo, 2018. "Empirical approach to threshold determination for the delineation of built-up areas with road network data," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-25, March.
  • Handle: RePEc:plo:pone00:0194806
    DOI: 10.1371/journal.pone.0194806
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194806
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0194806&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0194806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hernán D. Rozenfeld & Diego Rybski & Xavier Gabaix & Hernán A. Makse, 2011. "The Area and Population of Cities: New Insights from a Different Perspective on Cities," American Economic Review, American Economic Association, vol. 101(5), pages 2205-2225, August.
    2. TANNIER, Cécile & THOMAS, Isabelle & VUIDEL, Gilles & FRANKHAUSER, Pierre, 2011. "A fractal approach to identifying urban boundaries," LIDAM Reprints CORE 2297, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bala, Alain Pholo & Peeters, Dominique & Thomas, Isabelle, 2014. "Spatial issues on a hedonic estimation of rents in Brussels," Journal of Housing Economics, Elsevier, vol. 25(C), pages 104-123.
    2. Hiroyuki Usui, 2023. "Cost-Efficient Urban Areas Minimising the Connection Costs of Buildings by Roads: Simultaneous Optimisation of Criteria for Building Interval and Built Cluster Size," Networks and Spatial Economics, Springer, vol. 23(1), pages 65-96, March.
    3. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    4. Chen, Yanguang & Feng, Jian, 2012. "Fractal-based exponential distribution of urban density and self-affine fractal forms of cities," Chaos, Solitons & Fractals, Elsevier, vol. 45(11), pages 1404-1416.
    5. Chen, Yanguang & Wang, Yihan & Li, Xijing, 2019. "Fractal dimensions derived from spatial allometric scaling of urban form," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 122-134.
    6. Lü Ye & Yanguang Chen & Yuqing Long, 2023. "Exploring the Relationship between Urbanization and Ikization," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    7. de Bellefon, Marie-Pierre & Combes, Pierre-Philippe & Duranton, Gilles & Gobillon, Laurent & Gorin, Clément, 2021. "Delineating urban areas using building density," Journal of Urban Economics, Elsevier, vol. 125(C).
    8. Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
    9. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    10. Rémi Lemoy & Geoffrey Caruso, 2020. "Evidence for the homothetic scaling of urban forms," Environment and Planning B, , vol. 47(5), pages 870-888, June.
    11. Gilberto Seravalli, 2016. "Dimensioni e crescita delle citt? in Europa: l?incertezza danneggia soprattutto le citt? medie," SCIENZE REGIONALI, FrancoAngeli Editore, vol. 2016(2), pages 91-108.
    12. Sen, Hu & Chunxia, Yang & Xueshuai, Zhu & Zhilai, Zheng & Ya, Cao, 2015. "Distributions of region size and GDP and their relation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 46-56.
    13. Patrick Erik Bradley & Martin Behnisch, 2019. "Heavy-tailed distributions for building stock data," Environment and Planning B, , vol. 46(7), pages 1281-1296, September.
    14. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    15. Richard Bluhm & Christian Lessmann & Paul Schaudt, 2021. "The Political Geography of Cities," SoDa Laboratories Working Paper Series 2021-11, Monash University, SoDa Laboratories.
    16. Diego Rybski, 2013. "Commentary," Environment and Planning A, , vol. 45(6), pages 1266-1268, June.
    17. Baragwanath, Kathryn & Goldblatt, Ran & Hanson, Gordon & Khandelwal, Amit K., 2021. "Detecting urban markets with satellite imagery: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    18. Kristian Giesen & Jens Suedekum, 2012. "The size distribution across all “cities”: a unifying approach," Working Papers 2012/2, Institut d'Economia de Barcelona (IEB).
    19. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.
    20. Marta Reynal-Querol & José García-Montalvo, 2021. "Measuring Inequality from Above," Working Papers 1252, Barcelona School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0194806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.