IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193981.html
   My bibliography  Save this article

ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison

Author

Listed:
  • Ulf Kai Mertens
  • Andreas Voss
  • Stefan Radev

Abstract

We give an overview of the basic principles of approximate Bayesian computation (ABC), a class of stochastic methods that enable flexible and likelihood-free model comparison and parameter estimation. Our new open-source software called ABrox is used to illustrate ABC for model comparison on two prominent statistical tests, the two-sample t-test and the Levene-Test. We further highlight the flexibility of ABC compared to classical Bayesian hypothesis testing by computing an approximate Bayes factor for two multinomial processing tree models. Last but not least, throughout the paper, we introduce ABrox using the accompanied graphical user interface.

Suggested Citation

  • Ulf Kai Mertens & Andreas Voss & Stefan Radev, 2018. "ABrox—A user-friendly Python module for approximate Bayesian computation with a focus on model comparison," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
  • Handle: RePEc:plo:pone00:0193981
    DOI: 10.1371/journal.pone.0193981
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193981
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193981&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0193981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    2. McKinley, Trevelyan J. & Ross, Joshua V. & Deardon, Rob & Cook, Alex R., 2014. "Simulation-based Bayesian inference for epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 434-447.
    3. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    4. Bertl Johanna & Ewing Gregory & Kosiol Carolin & Futschik Andreas, 2017. "Approximate maximum likelihood estimation for population genetic inference," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(5-6), pages 291-312, December.
    5. Cecilia Viscardi & Michele Boreale & Fabio Corradi, 2021. "Weighted approximate Bayesian computation via Sanov’s theorem," Computational Statistics, Springer, vol. 36(4), pages 2719-2753, December.
    6. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    7. Jung Hsuan & Marjoram Paul, 2011. "Choice of Summary Statistic Weights in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-23, September.
    8. Owen Jamie & Wilkinson Darren J. & Gillespie Colin S., 2015. "Likelihood free inference for Markov processes: a comparison," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(2), pages 189-209, April.
    9. Maxime Lenormand & Franck Jabot & Guillaume Deffuant, 2013. "Adaptive approximate Bayesian computation for complex models," Computational Statistics, Springer, vol. 28(6), pages 2777-2796, December.
    10. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    11. Koblents, Eugenia & Míguez, Joaquín & Rodríguez, Marco A. & Schmidt, Alexandra M., 2016. "A nonlinear population Monte Carlo scheme for the Bayesian estimation of parameters of α-stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 57-74.
    12. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    13. repec:dau:papers:123456789/5724 is not listed on IDEAS
    14. Buzbas, Erkan O. & Rosenberg, Noah A., 2015. "AABC: Approximate approximate Bayesian computation for inference in population-genetic models," Theoretical Population Biology, Elsevier, vol. 99(C), pages 31-42.
    15. Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
    16. Kobayashi, Genya, 2014. "A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 167-183.
    17. Mathieu Langlard & Fabrice Lamadie & Sophie Charton & Johan Debayle, 2021. "Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 549-567, June.
    18. Simon Carrignon & Tom Brughmans & Iza Romanowska, 2020. "Tableware trade in the Roman East: Exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    19. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    20. C. C. Drovandi & A. N. Pettitt, 2011. "Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation," Biometrics, The International Biometric Society, vol. 67(1), pages 225-233, March.
    21. Creel, Michael & Kristensen, Dennis, 2011. "Indirect Likelihood Inference," Dynare Working Papers 8, CEPREMAP.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.