IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193331.html
   My bibliography  Save this article

A generative model for scientific concept hierarchies

Author

Listed:
  • Srayan Datta
  • Eytan Adar

Abstract

In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

Suggested Citation

  • Srayan Datta & Eytan Adar, 2018. "A generative model for scientific concept hierarchies," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-19, February.
  • Handle: RePEc:plo:pone00:0193331
    DOI: 10.1371/journal.pone.0193331
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193331
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193331&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0193331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luís M. A. Bettencourt & David I. Kaiser & Jasleen Kaur & Carlos Castillo-Chávez & David E. Wojick, 2008. "Population modeling of the emergence and development of scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 75(3), pages 495-518, June.
    2. Chen, Chaomei & Chen, Yue & Horowitz, Mark & Hou, Haiyan & Liu, Zeyuan & Pellegrino, Donald, 2009. "Towards an explanatory and computational theory of scientific discovery," Journal of Informetrics, Elsevier, vol. 3(3), pages 191-209.
    3. Réka Albert & Hawoong Jeong & Albert-László Barabási, 1999. "Diameter of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 130-131, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gozuacik, Necip & Sakar, C. Okan & Ozcan, Sercan, 2023. "Technological forecasting based on estimation of word embedding matrix using LSTM networks," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Klincewicz, 2016. "The emergent dynamics of a technological research topic: the case of graphene," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 319-345, January.
    2. M. Laura Frigotto & Massimo Riccaboni, 2011. "A few special cases: scientific creativity and network dynamics in the field of rare diseases," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 397-420, October.
    3. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    4. J. J. Winnink & Robert J. W. Tijssen, 2015. "Early stage identification of breakthroughs at the interface of science and technology: lessons drawn from a landmark publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 113-134, January.
    5. J. J. Winnink & Robert J. W. Tijssen, 2014. "R&D dynamics and scientific breakthroughs in HIV/AIDS drugs development: the case of Integrase Inhibitors," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 1-16, October.
    6. Winnink, J.J. & Tijssen, Robert J.W. & van Raan, A.F.J., 2019. "Searching for new breakthroughs in science: How effective are computerised detection algorithms?," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 673-686.
    7. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    8. Stephen Carley & Alan L. Porter, 2012. "A forward diversity index," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 407-427, February.
    9. Mohd-Zaid, Fairul & Kabban, Christine M. Schubert & Deckro, Richard F. & White, Edward D., 2017. "Parameter specification for the degree distribution of simulated Barabási–Albert graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 141-152.
    10. Chen, Shu-Heng & Chang, Chia-Ling & Wen, Ming-Chang, 2014. "Social networks and macroeconomic stability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 8, pages 1-40.
    11. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    12. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    13. Souzanchi Kashani, Ebrahim & Roshani, Saeed, 2019. "Evolution of innovation system literature: Intellectual bases and emerging trends," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 68-80.
    14. Tian Wang & Zhaoping Yang & Xiaodong Chen & Fang Han, 2022. "Bibliometric Analysis and Literature Review of Tourism Destination Resilience Research," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    15. Xian Li & Ronald Rousseau & Liming Liang & Fangjie Xi & Yushuang Lü & Yifan Yuan & Xiaojun Hu, 2022. "Is low interdisciplinarity of references an unexpected characteristic of Nobel Prize winning research?," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2105-2122, April.
    16. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    17. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    18. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    19. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    20. Ciro D. Esposito & Balazs Szatmari & Jonathan M. C. Sitruk & Nachoem M. Wijnberg, 2024. "Getting off to a good start: emerging academic fields and early-stage equity financing," Small Business Economics, Springer, vol. 62(4), pages 1591-1613, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.