IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0193093.html
   My bibliography  Save this article

Dynamic minimum set problem for reserve design: Heuristic solutions for large problems

Author

Listed:
  • Mathieu Bonneau
  • Régis Sabbadin
  • Fred A Johnson
  • Bradley Stith

Abstract

Conversion of wild habitats to human dominated landscape is a major cause of biodiversity loss. An approach to mitigate the impact of habitat loss consists of designating reserves where habitat is preserved and managed. Determining the most valuable areas to preserve in a landscape is called the reserve design problem. There exists several possible formulations of the reserve design problem, depending on the objectives and the constraints. In this article, we considered the dynamic problem of designing a reserve that contains a desired area of several key habitats. The dynamic case implies that the reserve cannot be designed in one time step, due to budget constraints, and that habitats can be lost before they are reserved, due for example to climate change or human development. We proposed two heuristics strategies that can be used to select sites to reserve each year for large reserve design problem. The first heuristic is a combination of the Marxan and site-ordering algorithms and the second heuristic is an augmented version of the common naive myopic heuristic. We evaluated the strategies on several simulated examples and showed that the augmented greedy heuristic is particularly interesting when some of the habitats to protect are particularly threatened and/or the compactness of the network is accounted for.

Suggested Citation

  • Mathieu Bonneau & Régis Sabbadin & Fred A Johnson & Bradley Stith, 2018. "Dynamic minimum set problem for reserve design: Heuristic solutions for large problems," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0193093
    DOI: 10.1371/journal.pone.0193093
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193093
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0193093&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0193093?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sabbadin, Régis & Spring, Danny & Rabier, Charles-Elie, 2007. "Dynamic reserve site selection under contagion risk of deforestation," Ecological Modelling, Elsevier, vol. 201(1), pages 75-81.
    2. Sándor F. Tóth & Robert G. Haight & Luke W. Rogers, 2011. "Dynamic Reserve Selection: Optimal Land Retention with Land-Price Feedbacks," Operations Research, INFORMS, vol. 59(5), pages 1059-1078, October.
    3. Bradley J. Cardinale & J. Emmett Duffy & Andrew Gonzalez & David U. Hooper & Charles Perrings & Patrick Venail & Anita Narwani & Georgina M. Mace & David Tilman & David A. Wardle & Ann P. Kinzig & Gre, 2012. "Biodiversity loss and its impact on humanity," Nature, Nature, vol. 486(7401), pages 59-67, June.
    4. Kerrie A. Wilson & Marissa F. McBride & Michael Bode & Hugh P. Possingham, 2006. "Prioritizing global conservation efforts," Nature, Nature, vol. 440(7082), pages 337-340, March.
    5. Costello, Christopher & Polasky, Stephen, 2004. "Dynamic reserve site selection," Resource and Energy Economics, Elsevier, vol. 26(2), pages 157-174, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Álvarez-Miranda, Eduardo & Salgado-Rojas, José & Hermoso, Virgilio & Garcia-Gonzalo, Jordi & Weintraub, Andrés, 2020. "An integer programming method for the design of multi-criteria multi-action conservation plans," Omega, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lennox, Gareth D. & Armsworth, Paul R., 2011. "Suitability of short or long conservation contracts under ecological and socio-economic uncertainty," Ecological Modelling, Elsevier, vol. 222(15), pages 2856-2866.
    2. Billionnet, Alain, 2013. "Mathematical optimization ideas for biodiversity conservation," European Journal of Operational Research, Elsevier, vol. 231(3), pages 514-534.
    3. Tara G Martin & Iadine Chadès & Peter Arcese & Peter P Marra & Hugh P Possingham & D Ryan Norris, 2007. "Optimal Conservation of Migratory Species," PLOS ONE, Public Library of Science, vol. 2(8), pages 1-5, August.
    4. Claron, Charles & Mikou, Mehdi & Levrel, Harold & Tardieu, Léa, 2022. "Mapping urban ecosystem services to design cost-effective purchase of development rights programs: The case of the Greater Paris metropolis," Land Use Policy, Elsevier, vol. 122(C).
    5. Mallory, Mindy L. & Ando, Amy W., 2014. "Implementing efficient conservation portfolio design," Resource and Energy Economics, Elsevier, vol. 38(C), pages 1-18.
    6. Juutinen, Artti & Tolvanen, Anne & Saarimaa, Miia & Ojanen, Paavo & Sarkkola, Sakari & Ahtikoski, Anssi & Haikarainen, Soili & Karhu, Jouni & Haara, Arto & Nieminen, Mika & Penttilä, Timo & Nousiainen, 2020. "Cost-effective land-use options of drained peatlands– integrated biophysical-economic modeling approach," Ecological Economics, Elsevier, vol. 175(C).
    7. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    8. Chih-Wei Lin & Yu Hong & Weihao Tu & Jinfu Liu, 2022. "Multiperiod Dynamic Programming Algorithm for Optimizing a Nature Reserve," Sustainability, MDPI, vol. 14(6), pages 1-17, March.
    9. Sándor F. Tóth & Robert G. Haight & Luke W. Rogers, 2011. "Dynamic Reserve Selection: Optimal Land Retention with Land-Price Feedbacks," Operations Research, INFORMS, vol. 59(5), pages 1059-1078, October.
    10. Dissanayake, Sahan T.M. & Önal, Hayri, 2011. "Amenity driven price effects and conservation reserve site selection: A dynamic linear integer programming approach," Ecological Economics, Elsevier, vol. 70(12), pages 2225-2235.
    11. Haider, Zulqarnain & Charkhgard, Hadi & Kwon, Changhyun, 2018. "A robust optimization approach for solving problems in conservation planning," Ecological Modelling, Elsevier, vol. 368(C), pages 288-297.
    12. Ruiqing Miao & David A. Hennessy & Hongli Feng, 2022. "Grassland easement evaluation and acquisition with uncertain conversion and conservation returns," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(1), pages 41-61, March.
    13. Miller, Daniel C., 2014. "Explaining Global Patterns of International Aid for Linked Biodiversity Conservation and Development," World Development, Elsevier, vol. 59(C), pages 341-359.
    14. Brigite Botequim & Miguel N. Bugalho & Ana Raquel Rodrigues & Susete Marques & Marco Marto & José G. Borges, 2021. "Combining Tree Species Composition and Understory Coverage Indicators with Optimization Techniques to Address Concerns with Landscape-Level Biodiversity," Land, MDPI, vol. 10(2), pages 1-26, January.
    15. Beyer, Hawthorne L. & Dujardin, Yann & Watts, Matthew E. & Possingham, Hugh P., 2016. "Solving conservation planning problems with integer linear programming," Ecological Modelling, Elsevier, vol. 328(C), pages 14-22.
    16. Harrison, Paul & Spring, Daniel & MacKenzie, Michael & Mac Nally, Ralph, 2008. "Dynamic reserve design with the union-find algorithm," Ecological Modelling, Elsevier, vol. 215(4), pages 369-376.
    17. Yang Liu & Jing Zhao & Xi Zheng & Xiaoyang Ou & Yaru Zhang & Jiaying Li, 2023. "Evaluation of Biodiversity Maintenance Capacity in Forest Landscapes: A Case Study in Beijing, China," Land, MDPI, vol. 12(7), pages 1-23, June.
    18. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    19. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    20. Bardsley, Douglas K. & Bardsley, Annette M., 2014. "Organising for socio-ecological resilience: The roles of the mountain farmer cooperative Genossenschaft Gran Alpin in Graubünden, Switzerland," Ecological Economics, Elsevier, vol. 98(C), pages 11-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0193093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.