IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188733.html
   My bibliography  Save this article

Detecting event-related changes in organizational networks using optimized neural network models

Author

Listed:
  • Ze Li
  • Duoyong Sun
  • Renqi Zhu
  • Zihan Lin

Abstract

Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques.

Suggested Citation

  • Ze Li & Duoyong Sun & Renqi Zhu & Zihan Lin, 2017. "Detecting event-related changes in organizational networks using optimized neural network models," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-21, November.
  • Handle: RePEc:plo:pone00:0188733
    DOI: 10.1371/journal.pone.0188733
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188733
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188733&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carey E. Priebe & John M. Conroy & David J. Marchette & Youngser Park, 2005. "Scan Statistics on Enron Graphs," Computational and Mathematical Organization Theory, Springer, vol. 11(3), pages 229-247, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana Diesner & Terrill L. Frantz & Kathleen M. Carley, 2005. "Communication Networks from the Enron Email Corpus “It's Always About the People. Enron is no Different”," Computational and Mathematical Organization Theory, Springer, vol. 11(3), pages 201-228, October.
    2. Grothendieck, John & Priebe, Carey E. & Gorin, Allen L., 2010. "Statistical inference on attributed random graphs: Fusion of graph features and content," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1777-1790, July.
    3. Ramin Moghaddass & Yongtao Guan, 2022. "Optimal Frameworks for Detecting Anomalies in Sensor-Intensive Heterogeneous Networks," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2583-2610, September.
    4. N. Lee & C. Priebe, 2011. "A latent process model for time series of attributed random graphs," Statistical Inference for Stochastic Processes, Springer, vol. 14(3), pages 231-253, October.
    5. Anurat Chapanond & Mukkai S. Krishnamoorthy & Bülent Yener, 2005. "Graph Theoretic and Spectral Analysis of Enron Email Data," Computational and Mathematical Organization Theory, Springer, vol. 11(3), pages 265-281, October.
    6. Joseph Crawford & Tijana Milenković, 2018. "ClueNet: Clustering a temporal network based on topological similarity rather than denseness," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-25, May.
    7. Priebe, Carey E. & Park, Youngser & Marchette, David J. & Conroy, John M. & Grothendieck, John & Gorin, Allen L., 2010. "Statistical inference on attributed random graphs: Fusion of graph features and content: An experiment on time series of Enron graphs," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1766-1776, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.