IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0185458.html
   My bibliography  Save this article

Predictors of all-cause mortality among 514,866 participants from the Korean National Health Screening Cohort

Author

Listed:
  • Choonghyun Ahn
  • Yunji Hwang
  • Sue K Park

Abstract

Background: There is not enough evidence regarding how information obtained from general health check-ups can predict individual mortality based on long-term follow-ups and large sample sizes. This study evaluated the applicability of various health information and measurements, consisting of self-reported data, anthropometric measurements and laboratory test results, in predicting individual mortality. Methods: The National Health Screening Cohort included 514,866 participants (aged 40–79 years) who were randomly selected from the overall database of the national health screening program in 2002–2003. Death was determined from causes of death statistics provided by Statistics Korea. We assessed variables that were collected at baseline and repeatedly measured for two consecutive years using traditional and time-variant Cox proportional hazards models in addition to random forest and boosting algorithms to identify predictors of 10-year all-cause mortality. Participants’ age at enrollment, lifestyle factors, anthropometric measurements and laboratory test results were included in the prediction models. We used c-statistics to assess the discriminatory ability of the models, their external validity and the ratio of expected to observed numbers to evaluate model calibration. Eligibility of Medicaid and household income levels were used as inequality indexes. Results: After the follow-up by 2013, 38,031 deaths were identified. The risk score based on the selected health information and measurements achieved a higher discriminatory ability for mortality prediction (c-statistics = 0.832, 0.841, 0.893, and 0.712 for Cox model, time-variant Cox model, random forest and boosting, respectively) than that of the previous studies. The results were externally validated using the community-based cohort data (c-statistics = 0.814). Conclusions: Individuals’ health information and measurements based on health screening can provide early indicators of their 10-year death risk, which can be useful for health monitoring and related policy decisions.

Suggested Citation

  • Choonghyun Ahn & Yunji Hwang & Sue K Park, 2017. "Predictors of all-cause mortality among 514,866 participants from the Korean National Health Screening Cohort," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0185458
    DOI: 10.1371/journal.pone.0185458
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185458
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0185458&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0185458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Central Bureau for Health Intelligence (CBHI), 2015. "The National Health Profile 2015," Working Papers id:7552, eSocialSciences.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    3. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    4. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    5. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    6. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    7. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    8. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    9. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    10. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    13. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    14. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    15. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    16. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    17. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    18. Stephane Helleringer & Daniel Arhinful & Benjamin Abuaku & Michael Humes & Emily Wilson & Andrew Marsh & Adrienne Clermont & Robert E Black & Jennifer Bryce & Agbessi Amouzou, 2018. "Using community-based reporting of vital events to monitor child mortality: Lessons from rural Ghana," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    19. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.
    20. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0185458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.