IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183686.html
   My bibliography  Save this article

Analysis of topological relationships and network properties in the interactions of human beings

Author

Listed:
  • Ye Yuan
  • Xuebo Chen
  • Qiubai Sun
  • Tianyun Huang

Abstract

In the animal world, various kinds of collective motions have been found and proven to be efficient ways of carrying out some activities such as searching for food and avoiding predators. Many scholars research the interactions of collective behaviors of human beings according to the rules of collective behaviors of animals. Based on the Lennard-Jones potential function and a self-organization process, our paper proposes a topological communication model to simulate the collective behaviors of human beings. In the results of simulations, we find various types of collective behavior and fission behavior and discover the threshold for the emergence of collective behavior, which is the range five to seven for the number of topology K. According to the analysis of network properties of the model, the in-degree of individuals is always equal to the number of topology. In the stable state, the out-degrees of individuals distribute around the value of the number of topology K, except that the out-degree of a single individual is approximately double the out-degrees of the other individuals. In addition, under different initial conditions, some features of different kinds of networks emerge from the model. We also find the leader and herd mentality effects in the characteristics of the behaviors of human beings in our model. Thus, this work could be used to discover how to promote the emergence of beneficial group behaviors and prevent the emergence of harmful behaviors.

Suggested Citation

  • Ye Yuan & Xuebo Chen & Qiubai Sun & Tianyun Huang, 2017. "Analysis of topological relationships and network properties in the interactions of human beings," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-22, August.
  • Handle: RePEc:plo:pone00:0183686
    DOI: 10.1371/journal.pone.0183686
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183686
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183686&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183686?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yevgeniy Vorobeychik & Zlatko Joveski & Sixie Yu, 2017. "Does communication help people coordinate?," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
    2. Czirók, András & Vicsek, Tamás, 2000. "Collective behavior of interacting self-propelled particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 281(1), pages 17-29.
    3. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    4. Tamas Vicsek, 2001. "A question of scale," Nature, Nature, vol. 411(6836), pages 421-421, May.
    5. Charlotte K. Hemelrijk & Hanspeter Kunz, 2005. "Density distribution and size sorting in fish schools: an individual-based model," Behavioral Ecology, International Society for Behavioral Ecology, vol. 16(1), pages 178-187, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becco, Ch. & Vandewalle, N. & Delcourt, J. & Poncin, P., 2006. "Experimental evidences of a structural and dynamical transition in fish school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 487-493.
    2. Barbaro, Alethea B.T. & Taylor, Kirk & Trethewey, Peterson F. & Youseff, Lamia & Birnir, Björn, 2009. "Discrete and continuous models of the dynamics of pelagic fish: Application to the capelin," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(12), pages 3397-3414.
    3. Dkhili, Jamila & Berger, Uta & Idrissi Hassani, Lalla Mina & Ghaout, Saïd & Peters, Ronny & Piou, Cyril, 2017. "Self-organized spatial structures of locust groups emerging from local interaction," Ecological Modelling, Elsevier, vol. 361(C), pages 26-40.
    4. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    5. Faedo, Nicolás & García-Violini, Demián & Ringwood, John V., 2021. "Controlling synchronization in a complex network of nonlinear oscillators via feedback linearisation and H∞-control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    7. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    8. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    10. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    12. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    13. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    14. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    15. T. Botmart & N. Yotha & P. Niamsup & W. Weera, 2017. "Hybrid Adaptive Pinning Control for Function Projective Synchronization of Delayed Neural Networks with Mixed Uncertain Couplings," Complexity, Hindawi, vol. 2017, pages 1-18, August.
    16. Sgrignoli, P. & Agliari, E. & Burioni, R. & Schianchi, A., 2015. "Instability and network effects in innovative markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 108(C), pages 260-271.
    17. Long Ma & Xiao Han & Zhesi Shen & Wen-Xu Wang & Zengru Di, 2015. "Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    18. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    19. Liang’an Huo & Fan Ding & Chen Liu & Yingying Cheng, 2018. "Dynamical Analysis of Rumor Spreading Model considering Node Activity in Complex Networks," Complexity, Hindawi, vol. 2018, pages 1-10, November.
    20. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.