IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0183038.html
   My bibliography  Save this article

Assessing public forecasts to encourage accountability: The case of MIT’s Technology Review

Author

Listed:
  • Jeffrey Funk

Abstract

Although high degrees of reliability have been found for many types of forecasts purportedly due to the existence of accountability, public forecasts of technology are rarely assessed and continue to have a poor reputation. This paper’s analysis of forecasts made by MIT’s Technology Review provides a rare assessment and thus a means to encourage accountability. It first shows that few of the predicted “breakthrough technologies” currently have large markets. Only four have sales greater than $10 billion while eight technologies not predicted by Technology Review have sales greater than $10 billion including three with greater than $100 billion and one other with greater than $50 billion. Second, possible reasons for these poor forecasts are then discussed including an over emphasis on the science-based process of technology change, sometimes called the linear model of innovation. Third, this paper describes a different model of technology change, one that is widely used by private companies and that explains the emergence of those technologies that have greater than $10 billion in sales. Fourth, technology change and forecasts are discussed in terms of cognitive biases and mental models.

Suggested Citation

  • Jeffrey Funk, 2017. "Assessing public forecasts to encourage accountability: The case of MIT’s Technology Review," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0183038
    DOI: 10.1371/journal.pone.0183038
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183038
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0183038&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0183038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Gordon, 2016. "The Rise and Fall of American Growth: The U.S. Standard of Living since the Civil War," Economics Books, Princeton University Press, edition 1, number 10544.
    2. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2008. "A Retrospective Look at the U.S. Productivity Growth Resurgence," Journal of Economic Perspectives, American Economic Association, vol. 22(1), pages 3-24, Winter.
    3. C. K. Prahalad & Richard A. Bettis, 1986. "The dominant logic: A new linkage between diversity and performance," Strategic Management Journal, Wiley Blackwell, vol. 7(6), pages 485-501, November.
    4. Oliner, Stephen D. & Sichel, Daniel E., 2003. "Information technology and productivity: where are we now and where are we going?," Journal of Policy Modeling, Elsevier, vol. 25(5), pages 477-503, July.
    5. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    6. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    7. Carliss Y. Baldwin & Kim B. Clark, 2000. "Design Rules, Volume 1: The Power of Modularity," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262024667, December.
    8. Rosenberg, Nathan, 1974. "Science, Invention and Economic Growth," Economic Journal, Royal Economic Society, vol. 84(333), pages 90-108, March.
    9. Richard A. Bettis & Michael A. Hitt, 1995. "The new competitive landscape," Strategic Management Journal, Wiley Blackwell, vol. 16(S1), pages 7-19.
    10. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey Funk, 2018. "Technology change, economic feasibility, and creative destruction: the case of new electronic products and services," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(1), pages 65-82.
    2. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    3. Nathan Goldschlag & Javier Miranda, 2020. "Business dynamics statistics of High Tech industries," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 29(1), pages 3-30, January.
    4. Luo, Jianxi, 2018. "Architecture and evolvability of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 132-144.
    5. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    6. Georges Daw, 2022. "Determinants of Wealth Disparities in the EU: A Multi-scale Development Accounting Investigation," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 64(2), pages 211-254, June.
    7. Matteo Deleidi & Claudia Fontanari & Santiago José Gahn, 2023. "Autonomous demand and technical change: exploring the Kaldor–Verdoorn law on a global level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 40(1), pages 57-80, April.
    8. Bart Leten & Rene Belderbos & Bart Van Looy, 2016. "Entry and Technological Performance in New Technology Domains: Technological Opportunities, Technology Competition and Technological Relatedness," Journal of Management Studies, Wiley Blackwell, vol. 53(8), pages 1257-1291, December.
    9. Jerome H. Powell, 2019. "Data-Dependent Monetary Policy in an Evolving Economy : A speech at \"Trucks and Terabytes: Integrating the 'Old' and 'New' Economies\" 61st Annual Meeting of the National Association for Bu," Speech 1093, Board of Governors of the Federal Reserve System (U.S.).
    10. John G. Fernald & Robert E. Hall & James H. Stock & Mark W. Watson, 2017. "The Disappointing Recovery of Output after 2009," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 48(1 (Spring), pages 1-81.
    11. Nandakumar, Karthik & Funk, Jeffrey L., 2015. "Understanding the timing of economic feasibility: The case of input interfaces for human-computer interaction," Technology in Society, Elsevier, vol. 43(C), pages 33-49.
    12. Liao, Hailin & Wang, Bin & Li, Baibing & Weyman-Jones, Tom, 2016. "ICT as a general-purpose technology: The productivity of ICT in the United States revisited," Information Economics and Policy, Elsevier, vol. 36(C), pages 10-25.
    13. Gold, E. Richard, 2021. "The fall of the innovation empire and its possible rise through open science," Research Policy, Elsevier, vol. 50(5).
    14. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    15. Oulton, Nicholas, 2012. "Long term implications of the ICT revolution: Applying the lessons of growth theory and growth accounting," Economic Modelling, Elsevier, vol. 29(5), pages 1722-1736.
    16. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    17. ., 2013. "Revisiting U.S. Productivity Growth over the Past Century with a View of the Future," Chapters, in: D. S.P. Rao & Bart van Ark (ed.), World Economic Performance, chapter 12, pages 317-370, Edward Elgar Publishing.
    18. Ming zhu Wang, 2023. "Changes in industry and corporate effects in the United States, 1978–2019," Strategic Management Journal, Wiley Blackwell, vol. 44(2), pages 477-490, February.
    19. Nicholas Crafts & Pieter Woltjer, 2021. "Growth Accounting In Economic History: Findings, Lessons And New Directions," Journal of Economic Surveys, Wiley Blackwell, vol. 35(3), pages 670-696, July.
    20. Ceccobelli, M. & Gitto, S. & Mancuso, P., 2012. "ICT capital and labour productivity growth: A non-parametric analysis of 14 OECD countries," Telecommunications Policy, Elsevier, vol. 36(4), pages 282-292.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0183038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.