IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0179497.html
   My bibliography  Save this article

Effect of APOE ε4 allele on survival and fertility in an adverse environment

Author

Listed:
  • Eric van Exel
  • Jacob J E Koopman
  • David van Bodegom
  • Johannes J Meij
  • Peter de Knijff
  • Juventus B Ziem
  • Caleb E Finch
  • Rudi G J Westendorp

Abstract

Background: The apolipoprotein-ε4 allele (APOE-ε4) is strongly associated with detrimental outcomes in affluent populations including atherosclerotic disease, Alzheimer’s disease, and reduced lifespan. Despite these detrimental outcomes, population frequencies of APOE-ε4 are high. We hypothesize that the high frequency of APOE-ε4 was maintained because of beneficial effects during evolution when infectious pathogens were more prevalent and a major cause of mortality. We examined a rural Ghanaian population with a high pathogen exposure for selective advantages of APOE-ε4, to survival and or fertility. Methods and findings: This rural Ghanaian population (n = 4311) has high levels of mortality from widespread infectious diseases which are the main cause of death. We examined whether APOE-ε4 was associated with survival (total follow-up time was 30,262 years) and fertility after stratifying by exposure to high or low pathogen levels. Households drawing water from open wells and rivers were classified as exposed to high pathogen levels while low pathogen exposure was classified as those drawing water from borehole wells. We found a non-significant, but positive survival benefit, i.e. the hazard ratio per APOE-ε4 allele was 0.80 (95% confidence interval: 0.69 to 1.05), adjusted for sex, tribe, and socioeconomic status. Among women aged 40 years and older (n = 842), APOE-ε4 was not associated with the lifetime number of children. However, APOE-ε4 was associated with higher fertility in women exposed to high pathogen levels. Compared with women not carrying an APOE-ε4 allele, those carrying one APOE-ε4 allele had on average one more child and those carrying two APOE-ε4 alleles had 3.5 more children (p = 0.018). Conclusions: Contrary to affluent modern-day populations, APOE-ε4 did not carry a survival disadvantage in this rural Ghanaian population. Moreover, APOE-ε4 promotes fertility in highly infectious environments. Our findings suggest that APOE-ε4 may be considered as evolutionarily adaptive. Its adverse associations in affluent modern populations with later onset diseases of aging further characterize APOE-ε4 as an example of antagonistic pleiotropy.

Suggested Citation

  • Eric van Exel & Jacob J E Koopman & David van Bodegom & Johannes J Meij & Peter de Knijff & Juventus B Ziem & Caleb E Finch & Rudi G J Westendorp, 2017. "Effect of APOE ε4 allele on survival and fertility in an adverse environment," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0179497
    DOI: 10.1371/journal.pone.0179497
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179497
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0179497&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0179497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esben M. Olsen & Mikko Heino & George R. Lilly & M. Joanne Morgan & John Brattey & Bruno Ernande & Ulf Dieckmann, 2004. "Maturation trends indicative of rapid evolution preceded the collapse of northern cod," Nature, Nature, vol. 428(6986), pages 932-935, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
    2. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    3. Josep Alós & Miquel Palmer & Robert Arlinghaus, 2012. "Consistent Selection towards Low Activity Phenotypes When Catchability Depends on Encounters among Human Predators and Fish," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    4. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    5. Stafford, Richard & Jones, Peter JS Dr, 2019. "Viewpoint – Ocean Plastic Pollution: a convenient but distracting truth?," MarXiv fu5dp_v1, Center for Open Science.
    6. Dercole, Fabio & Della Rossa, Fabio, 2017. "A deterministic eco-genetic model for the short-term evolution of exploited fish stocks," Ecological Modelling, Elsevier, vol. 343(C), pages 80-100.
    7. Josepha Duarte Pinto Gomes & Bocar Sabaly Baldé & Saliou Faye & Iça Barry & Hervé Demarcq & Patrice Brehmer, 2024. "Growth Patterns of Small Pelagic Fish in West Africa," Sustainability, MDPI, vol. 16(22), pages 1-17, November.
    8. John Sebit Benansio & Stephan Michael Funk & John Ladu Lino & Johnson Jiribi Balli & Raphael Filberto Talamuk & John Ohitai Dante & Daniele Dendi & Julia E. Fa & Luca Luiselli, 2025. "Navigating climate change challenges in Sudd wetland fishing communities, South Sudan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 30(1), pages 1-27, January.
    9. Hazlerigg, Charles R.E. & Tyler, Charles R. & Lorenzen, Kai & Wheeler, James R. & Thorbek, Pernille, 2014. "Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model," Ecological Modelling, Elsevier, vol. 280(C), pages 76-88.
    10. Helgesen, Irmelin Slettemoen & Skonhoft, Anders & Eide, Arne, 2018. "Maximum Yield Fishing and Optimal Fleet Composition. A Stage Structured Model Analysis With an Example From the Norwegian North-East Arctic Cod Fishery," Ecological Economics, Elsevier, vol. 153(C), pages 204-217.
    11. Hossain, Md. Monir & Matsuishi, Takashi & Arhonditsis, George, 2010. "Elucidation of ecosystem attributes of an oligotrophic lake in Hokkaido, Japan, using Ecopath with Ecosim (EwE)," Ecological Modelling, Elsevier, vol. 221(13), pages 1717-1730.
    12. Williams, Meryl J., 2004. "World Fish Supplies, Outlook and Food Security," 2004: Fish, Aquaculture and Food Security: Sustaining Fish as a Food Supply, 11 August 2004 124062, Crawford Fund.
    13. Stafford, Richard & Jones, Peter JS Dr, 2019. "Viewpoint – Ocean Plastic Pollution: a convenient but distracting truth?," MarXiv fu5dp, Center for Open Science.
    14. Hart, Anthony M., 2015. "Commercial scale invertebrate fisheries enhancement in Australia: Experiences, challenges and opportunities," Marine Policy, Elsevier, vol. 62(C), pages 82-93.
    15. Maroto, Jose M. & Moran, Manuel, 2014. "Detecting the presence of depensation in collapsed fisheries: The case of the Northern cod stock," Ecological Economics, Elsevier, vol. 97(C), pages 101-109.
    16. Oksana Revutskaya & Galina Neverova & Efim Frisman, 2024. "Discrete-Time Model of an Exploited Population with Age and Sex Structures: Instability and the Hydra Effect," Mathematics, MDPI, vol. 12(4), pages 1-27, February.
    17. Song, Zhiyuan & Feldman, Marcus W., 2013. "Plant–animal mutualism in biological markets: Evolutionary and ecological dynamics driven by non-heritable phenotypic variance," Theoretical Population Biology, Elsevier, vol. 88(C), pages 20-30.
    18. Andersen, K.H. & Farnsworth, K.D. & Thygesen, U.H. & Beyer, J.E., 2007. "The evolutionary pressure from fishing on size at maturation of Baltic cod," Ecological Modelling, Elsevier, vol. 204(1), pages 246-252.
    19. Guttormsen, Atle G. & Kristofersson, Dadi & Nævdal, Eric, 2008. "Optimal management of renewable resources with Darwinian selection induced by harvesting," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 167-179, September.
    20. Jordi Guillen & Steven J. Holmes & Natacha Carvalho & John Casey & Hendrik Dörner & Maurizio Gibin & Alessandro Mannini & Paraskevas Vasilakopoulos & Antonella Zanzi, 2018. "A Review of the European Union Landing Obligation Focusing on Its Implications for Fisheries and the Environment," Sustainability, MDPI, vol. 10(4), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0179497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.