IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178650.html
   My bibliography  Save this article

Community detection in sequence similarity networks based on attribute clustering

Author

Listed:
  • Janamejaya Chowdhary
  • Frank E Löffler
  • Jeremy C Smith

Abstract

Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs, for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the “ground truth” community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments

Suggested Citation

  • Janamejaya Chowdhary & Frank E Löffler & Jeremy C Smith, 2017. "Community detection in sequence similarity networks based on attribute clustering," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-31, July.
  • Handle: RePEc:plo:pone00:0178650
    DOI: 10.1371/journal.pone.0178650
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178650
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178650&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. T. S. Evans & R. Lambiotte, 2010. "Line graphs of weighted networks for overlapping communities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(2), pages 265-272, September.
    2. Bothorel, Cecile & Cruz, Juan David & Magnani, Matteo & Micenková, Barbora, 2015. "Clustering attributed graphs: Models, measures and methods," Network Science, Cambridge University Press, vol. 3(3), pages 408-444, September.
    3. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    2. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    3. Warshaw, Evan, 2020. "Asymmetric volatility spillover between European equity and foreign exchange markets: Evidence from the frequency domain," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 1-14.
    4. Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
    5. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    6. Shirin Enshaeifar & Ahmed Zoha & Andreas Markides & Severin Skillman & Sahr Thomas Acton & Tarek Elsaleh & Masoud Hassanpour & Alireza Ahrabian & Mark Kenny & Stuart Klein & Helen Rostill & Ramin Nilf, 2018. "Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    7. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    8. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    9. Termeh Shafie & David Schoch, 2021. "Multiplexity analysis of networks using multigraph representations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1425-1444, December.
    10. Václav Plevka & Pieter Segaert & Chris M. J. Tampère & Mia Hubert, 2016. "Analysis of travel activity determinants using robust statistics," Transportation, Springer, vol. 43(6), pages 979-996, November.
    11. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    12. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    13. Jeremias Leão & Francisco Cysneiros & Helton Saulo & N. Balakrishnan, 2016. "Constrained test in linear models with multivariate power exponential distribution," Computational Statistics, Springer, vol. 31(4), pages 1569-1592, December.
    14. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    15. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    16. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    17. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    18. Bourguignon, Marcelo & Saulo, Helton & Fernandez, Rodrigo Nobre, 2016. "A new Pareto-type distribution with applications in reliability and income data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 166-175.
    19. Hervé Cardot & Antonio Musolesi, 2018. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: the case of local development policies in France," SEEDS Working Papers 0718, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2018.
    20. Danúbia R. Cunha & Roberto Vila & Helton Saulo & Rodrigo N. Fernandez, 2020. "A General Family of Autoregressive Conditional Duration Models Applied to High-Frequency Financial Data," JRFM, MDPI, vol. 13(3), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.