IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0178153.html
   My bibliography  Save this article

A generalized right truncated bivariate Poisson regression model with applications to health data

Author

Listed:
  • M Ataharul Islam
  • Rafiqul I Chowdhury

Abstract

A generalized right truncated bivariate Poisson regression model is proposed in this paper. Estimation and tests for goodness of fit and over or under dispersion are illustrated for both untruncated and right truncated bivariate Poisson regression models using marginal-conditional approach. Estimation and test procedures are illustrated for bivariate Poisson regression models with applications to Health and Retirement Study data on number of health conditions and the number of health care services utilized. The proposed test statistics are easy to compute and it is evident from the results that the models fit the data very well. A comparison between the right truncated and untruncated bivariate Poisson regression models using the test for nonnested models clearly shows that the truncated model performs significantly better than the untruncated model.

Suggested Citation

  • M Ataharul Islam & Rafiqul I Chowdhury, 2017. "A generalized right truncated bivariate Poisson regression model with applications to health data," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
  • Handle: RePEc:plo:pone00:0178153
    DOI: 10.1371/journal.pone.0178153
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178153
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0178153&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0178153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jung, Robert C & Winkelmann, Rainer, 1993. "Two Aspects of Labor Mobility: A Bivariate Poisson Regression Approach," Empirical Economics, Springer, vol. 18(3), pages 543-556.
    2. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najla Qarmalah & Abdulhamid A. Alzaid, 2023. "Zero-Dependent Bivariate Poisson Distribution with Applications," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bermúdez i Morata, Lluís, 2009. "A priori ratemaking using bivariate Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 135-141, February.
    2. Lluis Bermúdez i Morata, 2008. "A priori ratemaking using bivariate poisson regression models," Working Papers XREAP2008-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2008.
    3. Su Pei-Fang & Mau Yu-Lin & Guo Yan & Li Chung-I & Liu Qi & Boice John D. & Shyr Yu, 2017. "Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(1), pages 47-58, March.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
    6. A. Colin Cameron & Per Johansson, 2004. "Bivariate Count Data Regression Using Series Expansions: With Applications," Working Papers 9815, University of California, Davis, Department of Economics.
    7. Atella, Vincenzo & Deb, Partha, 2008. "Are primary care physicians, public and private sector specialists substitutes or complements? Evidence from a simultaneous equations model for count data," Journal of Health Economics, Elsevier, vol. 27(3), pages 770-785, May.
    8. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    9. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    10. William Greene, 2007. "Correlation in Bivariate Poisson Regression Model," Working Papers 07-14, New York University, Leonard N. Stern School of Business, Department of Economics.
    11. Bauer, Thomas K. & Million, Andreas & Rotte, Ralph & Zimmermann, Klaus F., 1998. "Immigration Labor and Workplace Safety," IZA Discussion Papers 16, Institute of Labor Economics (IZA).
    12. Rajib Dey & M. Ataharul Islam, 2017. "A conditional count model for repeated count data and its application to GEE approach," Statistical Papers, Springer, vol. 58(2), pages 485-504, June.
    13. Bermúdez, Lluís & Karlis, Dimitris, 2011. "Bayesian multivariate Poisson models for insurance ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 226-236, March.
    14. Derek S. Young & Andrew M. Raim & Nancy R. Johnson, 2017. "Zero-inflated modelling for characterizing coverage errors of extracts from the US Census Bureau's Master Address File," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 73-97, January.
    15. J Reade & C Singleton & L Vaughan Williams, 2020. "Betting Markets for English Premier League Results and Scorelines: Evaluating a Simple Forecasting Model," Economic Issues Journal Articles, Economic Issues, vol. 25(1), pages 87-106, March.
    16. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    17. Chen, Yulong & Ma, Liyuan & Orazem, Peter F., 2023. "The heterogeneous role of broadband access on establishment entry and exit by sector and urban and rural markets," Telecommunications Policy, Elsevier, vol. 47(3).
    18. Yang, Miao & Das, Kalyan & Majumdar, Anandamayee, 2016. "Analysis of bivariate zero inflated count data with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 73-82.
    19. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    20. Lillestøl, Jostein, 2020. "Sampling risk evaluations in a tax fraud case: Some modelling issues," Discussion Papers 2020/5, Norwegian School of Economics, Department of Business and Management Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0178153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.