IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177866.html
   My bibliography  Save this article

Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning

Author

Listed:
  • Pedro L Teixeira
  • Jeff L Mendenhall
  • Sten Heinze
  • Brian Weiner
  • Marcin J Skwark
  • Jens Meiler

Abstract

De novo membrane protein structure prediction is limited to small proteins due to the conformational search space quickly expanding with length. Long-range contacts (24+ amino acid separation)–residue positions distant in sequence, but in close proximity in the structure, are arguably the most effective way to restrict this conformational space. Inverse methods for co-evolutionary analysis predict a global set of position-pair couplings that best explain the observed amino acid co-occurrences, thus distinguishing between evolutionarily explained co-variances and these arising from spurious transitive effects. Here, we show that applying machine learning approaches and custom descriptors improves evolutionary contact prediction accuracy, resulting in improvement of average precision by 6 percentage points for the top 1L non-local contacts. Further, we demonstrate that predicted contacts improve protein folding with BCL::Fold. The mean RMSD100 metric for the top 10 models folded was reduced by an average of 2 Å for a benchmark of 25 membrane proteins.

Suggested Citation

  • Pedro L Teixeira & Jeff L Mendenhall & Sten Heinze & Brian Weiner & Marcin J Skwark & Jens Meiler, 2017. "Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
  • Handle: RePEc:plo:pone00:0177866
    DOI: 10.1371/journal.pone.0177866
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177866
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177866&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Feinauer & Marcin J Skwark & Andrea Pagnani & Erik Aurell, 2014. "Improving Contact Prediction along Three Dimensions," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-13, October.
    2. Carlo Baldassi & Marco Zamparo & Christoph Feinauer & Andrea Procaccini & Riccardo Zecchina & Martin Weigt & Andrea Pagnani, 2014. "Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
    3. Marcin J Skwark & Daniele Raimondi & Mirco Michel & Arne Elofsson, 2014. "Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-14, November.
    4. Erik Aurell, 2016. "The Maximum Entropy Fallacy Redux?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik van Nimwegen, 2016. "Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-10, May.
    2. Lorenzo Asti & Guido Uguzzoni & Paolo Marcatili & Andrea Pagnani, 2016. "Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-20, April.
    3. Erik Aurell, 2016. "The Maximum Entropy Fallacy Redux?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-7, May.
    4. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Sheng Wang & Siqi Sun & Zhen Li & Renyu Zhang & Jinbo Xu, 2017. "Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-34, January.
    6. Tatjana Braun & Julia Koehler Leman & Oliver F Lange, 2015. "Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
    7. Elena Facco & Andrea Pagnani & Elena Tea Russo & Alessandro Laio, 2019. "The intrinsic dimension of protein sequence evolution," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.