Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1003889
Download full text from publisher
References listed on IDEAS
- Lukas Burger & Erik van Nimwegen, 2010. "Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-18, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pedro L Teixeira & Jeff L Mendenhall & Sten Heinze & Brian Weiner & Marcin J Skwark & Jens Meiler, 2017. "Membrane protein contact and structure prediction using co-evolution in conjunction with machine learning," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-24, May.
- Sheng Wang & Siqi Sun & Zhen Li & Renyu Zhang & Jinbo Xu, 2017. "Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-34, January.
- Erik Aurell, 2016. "The Maximum Entropy Fallacy Redux?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-7, May.
- Tatjana Braun & Julia Koehler Leman & Oliver F Lange, 2015. "Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Procaccini & Bryan Lunt & Hendrik Szurmant & Terence Hwa & Martin Weigt, 2011. "Dissecting the Specificity of Protein-Protein Interaction in Bacterial Two-Component Signaling: Orphans and Crosstalks," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-9, May.
- Susann Vorberg & Stefan Seemayer & Johannes Söding, 2018. "Synthetic protein alignments by CCMgen quantify noise in residue-residue contact prediction," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-25, November.
- Simona Cocco & Remi Monasson & Martin Weigt, 2013. "From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-17, August.
- Saeed Omidi & Mihaela Zavolan & Mikhail Pachkov & Jeremie Breda & Severin Berger & Erik van Nimwegen, 2017. "Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-22, July.
- Carlo Baldassi & Marco Zamparo & Christoph Feinauer & Andrea Procaccini & Riccardo Zecchina & Martin Weigt & Andrea Pagnani, 2014. "Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
- Yan Zeng & Wei Wang & Yong Ding & Jilin Zhang & Yongjian Ren & Guangzheng Yi, 2022. "Adaptive Distributed Parallel Training Method for a Deep Learning Model Based on Dynamic Critical Paths of DAG," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
- Erik van Nimwegen, 2016. "Inferring Contacting Residues within and between Proteins: What Do the Probabilities Mean?," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-10, May.
- Hugo Jacquin & Amy Gilson & Eugene Shakhnovich & Simona Cocco & Rémi Monasson, 2016. "Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable Models," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-18, May.
- Tatjana Braun & Julia Koehler Leman & Oliver F Lange, 2015. "Combining Evolutionary Information and an Iterative Sampling Strategy for Accurate Protein Structure Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-20, December.
- Elena Facco & Andrea Pagnani & Elena Tea Russo & Alessandro Laio, 2019. "The intrinsic dimension of protein sequence evolution," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-16, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003889. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.