IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0177583.html
   My bibliography  Save this article

A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature

Author

Listed:
  • Gerard Morales
  • Isidre Llorente
  • Emilio Montesinos
  • Concepció Moragrega

Abstract

A two-step modeling approach was used for predicting the effect of temperature on the growth of Xanthomonas arboricola pv. pruni, causal agent of bacterial spot disease of stone fruit. The in vitro growth of seven strains was monitored at temperatures from 5 to 35°C with a Bioscreen C system, and a calibrating equation was generated for converting optical densities to viable counts. In primary modeling, Baranyi, Buchanan, and modified Gompertz equations were fitted to viable count growth curves over the entire temperature range. The modified Gompertz model showed the best fit to the data, and it was selected to estimate the bacterial growth parameters at each temperature. Secondary modeling of maximum specific growth rate as a function of temperature was performed by using the Ratkowsky model and its variations. The modified Ratkowsky model showed the best goodness of fit to maximum specific growth rate estimates, and it was validated successfully for the seven strains at four additional temperatures. The model generated in this work will be used for predicting temperature-based Xanthomonas arboricola pv. pruni growth rate and derived potential daily doublings, and included as the inoculum potential component of a bacterial spot of stone fruit disease forecaster.

Suggested Citation

  • Gerard Morales & Isidre Llorente & Emilio Montesinos & Concepció Moragrega, 2017. "A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0177583
    DOI: 10.1371/journal.pone.0177583
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177583
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0177583&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0177583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baty, Florent & Ritz, Christian & Charles, Sandrine & Brutsche, Martin & Flandrois, Jean-Pierre & Delignette-Muller, Marie-Laure, 2015. "A Toolbox for Nonlinear Regression in R: The Package nlstools," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i05).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerard Morales & Concepció Moragrega & Emilio Montesinos & Isidre Llorente, 2018. "Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Micoli & Giuseppe Di Rauso Simeone & Maria Turco & Giuseppe Toscano & Maria A. Rao, 2023. "Anaerobic Digestion of Olive Mill Wastewater in the Presence of Biochar," Energies, MDPI, vol. 16(7), pages 1-14, April.
    2. Tilman Schmider & Anne Grethe Hestnes & Julia Brzykcy & Hannes Schmidt & Arno Schintlmeister & Benjamin R. K. Roller & Ezequiel Jesús Teran & Andrea Söllinger & Oliver Schmidt & Martin F. Polz & Andre, 2024. "Physiological basis for atmospheric methane oxidation and methanotrophic growth on air," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Mario Gallego-Abenza & Nicolas Mathevon & David Wheatcroft & Ulrika Candolin, 2020. "Experience modulates an insect’s response to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 31(1), pages 90-96.
    4. S. Mahmuda & T. Sigler & E. Knight & J. Corcoran, 2020. "Sectoral evolution and shifting service delivery models in the sharing economy," Business Research, Springer;German Academic Association for Business Research, vol. 13(2), pages 663-684, July.
    5. Aysan Badraghi & Beáta Novotná & Jan Frouz & Koloman Krištof & Martin Trakovický & Martin Juriga & Branislav Chvila & Leonardo Montagnani, 2023. "Temporal Dynamics of CO 2 Fluxes over a Non-Irrigated Vineyard," Land, MDPI, vol. 12(10), pages 1-16, October.
    6. Taufan Alam & Priyono Suryanto & Nanang Susyanto & Budiastuti Kurniasih & Panjisakti Basunanda & Eka Tarwaca Susila Putra & Dody Kastono & Dyah Weny Respatie & Muhammad Habib Widyawan & Nurmansyah & A, 2022. "Performance of 45 Non-Linear Models for Determining Critical Period of Weed Control and Acceptable Yield Loss in Soybean Agroforestry Systems," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    7. Hirche, Martin & Greenacre, Luke & Nenycz-Thiel, Magda & Loose, Simone & Lockshin, Larry, 2021. "SKU performance and distribution: A large-scale analysis of the role of product characteristics with store scanner data," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    8. Divino, Jose Angelo & Maciel, Daniel T.G.N. & Sosa, Wilfredo, 2020. "Government size, composition of public spending and economic growth in Brazil," Economic Modelling, Elsevier, vol. 91(C), pages 155-166.
    9. Diana Carolina Rodríguez-Abello & Jorge Augusto Navarro-Alberto & Luis Ramírez-Avilés & Roberto Zamora-Bustillos, 2018. "The effect of sowing time on the growth of chia (Salvia hispanica L.): What do nonlinear mixed models tell us about it?," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    10. Mathilde, Godefroid & Tom, Zeimes & Lorenzo, Bramanti & Pascal, Romans & Marzia, Bo & Margherita, Toma & Bruno, Danis & Philippe, Dubois & Charlène, Guillaumot, 2023. "Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming," Ecological Modelling, Elsevier, vol. 475(C).
    11. Justin D. Gay & Bryce Currey & E. N. J. Brookshire, 2022. "Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Yani Bao & Wai Ling Lee & Jie Jia, 2018. "Exergy Analyses and Modelling of a Novel Extra-Low Temperature Dedicated Outdoor Air System," Energies, MDPI, vol. 11(5), pages 1-25, May.
    14. Hirche, Martin & Farris, Paul W. & Greenacre, Luke & Quan, Yiran & Wei, Susan, 2021. "Predicting Under- and Overperforming SKUs within the Distribution–Market Share Relationship," Journal of Retailing, Elsevier, vol. 97(4), pages 697-714.
    15. Laura Scherer & İrem Gürdal & Peter M. van Bodegom, 2022. "Characterization factors for ocean acidification impacts on marine biodiversity," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2069-2079, December.
    16. Remigio Paradelo & Paula García & Alba González & Khaled Al-Zawahreh & Maria Teresa Barral, 2023. "Influence of Zinc and Humic Acids on Dye Adsorption from Water by Two Composts," IJERPH, MDPI, vol. 20(7), pages 1-10, March.
    17. Christian Ritz & Florent Baty & Jens C Streibig & Daniel Gerhard, 2015. "Dose-Response Analysis Using R," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0177583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.