IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0175944.html
   My bibliography  Save this article

HacDivSel: Two new methods (haplotype-based and outlier-based) for the detection of divergent selection in pairs of populations

Author

Listed:
  • Antonio Carvajal-Rodríguez

Abstract

The detection of genomic regions involved in local adaptation is an important topic in current population genetics. There are several detection strategies available depending on the kind of genetic and demographic information at hand. A common drawback is the high risk of false positives. In this study we introduce two complementary methods for the detection of divergent selection from populations connected by migration. Both methods have been developed with the aim of being robust to false positives. The first method combines haplotype information with inter-population differentiation (FST). Evidence of divergent selection is concluded only when both the haplotype pattern and the FST value support it. The second method is developed for independently segregating markers i.e. there is no haplotype information. In this case, the power to detect selection is attained by developing a new outlier test based on detecting a bimodal distribution. The test computes the FST outliers and then assumes that those of interest would have a different mode. We demonstrate the utility of the two methods through simulations and the analysis of real data. The simulation results showed power ranging from 60–95% in several of the scenarios whilst the false positive rate was controlled below the nominal level. The analysis of real samples consisted of phased data from the HapMap project and unphased data from intertidal marine snail ecotypes. The results illustrate that the proposed methods could be useful for detecting locally adapted polymorphisms. The software HacDivSel implements the methods explained in this manuscript.

Suggested Citation

  • Antonio Carvajal-Rodríguez, 2017. "HacDivSel: Two new methods (haplotype-based and outlier-based) for the detection of divergent selection in pairs of populations," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-25, April.
  • Handle: RePEc:plo:pone00:0175944
    DOI: 10.1371/journal.pone.0175944
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175944
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0175944&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0175944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin F Voight & Sridhar Kudaravalli & Xiaoquan Wen & Jonathan K Pritchard, 2006. "A Map of Recent Positive Selection in the Human Genome," PLOS Biology, Public Library of Science, vol. 4(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Ronen & Glenn Tesler & Ali Akbari & Shay Zakov & Noah A Rosenberg & Vineet Bafna, 2015. "Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele," PLOS Genetics, Public Library of Science, vol. 11(9), pages 1-27, September.
    2. Nicholas A Johnson & Marc A Coram & Mark D Shriver & Isabelle Romieu & Gregory S Barsh & Stephanie J London & Hua Tang, 2011. "Ancestral Components of Admixed Genomes in a Mexican Cohort," PLOS Genetics, Public Library of Science, vol. 7(12), pages 1-12, December.
    3. Felix M Key & Benjamin Peter & Megan Y Dennis & Emilia Huerta-Sánchez & Wei Tang & Ludmila Prokunina-Olsson & Rasmus Nielsen & Aida M Andrés, 2014. "Selection on a Variant Associated with Improved Viral Clearance Drives Local, Adaptive Pseudogenization of Interferon Lambda 4 (IFNL4)," PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-12, October.
    4. Sol Katzman & Andrew D Kern & Katherine S Pollard & Sofie R Salama & David Haussler, 2010. "GC-Biased Evolution Near Human Accelerated Regions," PLOS Genetics, Public Library of Science, vol. 6(5), pages 1-13, May.
    5. Sijie Wu & Manfei Zhang & Xinzhou Yang & Fuduan Peng & Juan Zhang & Jingze Tan & Yajun Yang & Lina Wang & Yanan Hu & Qianqian Peng & Jinxi Li & Yu Liu & Yaqun Guan & Chen Chen & Merel A Hamer & Tamar , 2018. "Genome-wide association studies and CRISPR/Cas9-mediated gene editing identify regulatory variants influencing eyebrow thickness in humans," PLOS Genetics, Public Library of Science, vol. 14(9), pages 1-22, September.
    6. Clara C Elbers & Carolien G F de Kovel & Yvonne T van der Schouw & Juliaan R Meijboom & Florianne Bauer & Diederick E Grobbee & Gosia Trynka & Jana V van Vliet-Ostaptchouk & Cisca Wijmenga & N Charlot, 2009. "Variants in Neuropeptide Y Receptor 1 and 5 Are Associated with Nutrient-Specific Food Intake and Are Under Recent Selection in Europeans," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-13, September.
    7. Hussain Bahbahani & Bashir Salim & Faisal Almathen & Fahad Al Enezi & Joram M Mwacharo & Olivier Hanotte, 2018. "Signatures of positive selection in African Butana and Kenana dairy zebu cattle," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Daniel R Schrider & Andrew D Kern, 2016. "S/HIC: Robust Identification of Soft and Hard Sweeps Using Machine Learning," PLOS Genetics, Public Library of Science, vol. 12(3), pages 1-31, March.
    9. Dominic Nelson & Jerome Kelleher & Aaron P Ragsdale & Claudia Moreau & Gil McVean & Simon Gravel, 2020. "Accounting for long-range correlations in genome-wide simulations of large cohorts," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-12, May.
    10. Jingjing Liang & Thu H Le & Digna R Velez Edwards & Bamidele O Tayo & Kyle J Gaulton & Jennifer A Smith & Yingchang Lu & Richard A Jensen & Guanjie Chen & Lisa R Yanek & Karen Schwander & Salman M Taj, 2017. "Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations," PLOS Genetics, Public Library of Science, vol. 13(5), pages 1-22, May.
    11. Kun Tang & Kevin R Thornton & Mark Stoneking, 2007. "A New Approach for Using Genome Scans to Detect Recent Positive Selection in the Human Genome," PLOS Biology, Public Library of Science, vol. 5(7), pages 1-16, June.
    12. Raul Torres & Zachary A Szpiech & Ryan D Hernandez, 2018. "Human demographic history has amplified the effects of background selection across the genome," PLOS Genetics, Public Library of Science, vol. 14(6), pages 1-27, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0175944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.