IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170448.html
   My bibliography  Save this article

A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks

Author

Listed:
  • Michael Brusco
  • Hannah J Stolze
  • Michaela Hoffman
  • Douglas Steinley

Abstract

A popular objective criterion for partitioning a set of actors into core and periphery subsets is the maximization of the correlation between an ideal and observed structure associated with intra-core and intra-periphery ties. The resulting optimization problem has commonly been tackled using heuristic procedures such as relocation algorithms, genetic algorithms, and simulated annealing. In this paper, we present a computationally efficient simulated annealing algorithm for maximum correlation core/periphery partitioning of binary networks. The algorithm is evaluated using simulated networks consisting of up to 2000 actors and spanning a variety of densities for the intra-core, intra-periphery, and inter-core-periphery components of the network. Core/periphery analyses of problem solving, trust, and information sharing networks for the frontline employees and managers of a consumer packaged goods manufacturer are provided to illustrate the use of the model.

Suggested Citation

  • Michael Brusco & Hannah J Stolze & Michaela Hoffman & Douglas Steinley, 2017. "A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
  • Handle: RePEc:plo:pone00:0170448
    DOI: 10.1371/journal.pone.0170448
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170448
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170448&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Groenen & Willem Heiser, 1996. "The tunneling method for global optimization in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 529-550, September.
    2. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    3. L. Ark & Marcel Croon & Klaas Sijtsma, 2008. "Mokken Scale Analysis for Dichotomous Items Using Marginal Models," Psychometrika, Springer;The Psychometric Society, vol. 73(2), pages 183-208, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daiva Stanelyte & Virginijus Radziukynas, 2019. "Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-26, December.
    2. van der Ark, L. Andries, 2012. "New Developments in Mokken Scale Analysis in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i05).
    3. Groenen, Patrick J. F. & Franses, Philip Hans, 2000. "Visualizing time-varying correlations across stock markets," Journal of Empirical Finance, Elsevier, vol. 7(2), pages 155-172, August.
    4. Jesper Tijmstra & David Hessen & Peter Heijden & Klaas Sijtsma, 2013. "Testing Manifest Monotonicity Using Order-Constrained Statistical Inference," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 83-97, January.
    5. Marc Robini & Pierre-Jean Reissman, 2013. "From simulated annealing to stochastic continuation: a new trend in combinatorial optimization," Journal of Global Optimization, Springer, vol. 56(1), pages 185-215, May.
    6. Michael Brusco & Patrick Doreian, 2015. "An Exact Algorithm for the Two-Mode KL-Means Partitioning Problem," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 481-515, October.
    7. J. Straat & L. Ark & Klaas Sijtsma, 2013. "Comparing Optimization Algorithms for Item Selection in Mokken Scale Analysis," Journal of Classification, Springer;The Classification Society, vol. 30(1), pages 75-99, April.
    8. Malone, Samuel W. & Tarazaga, Pablo & Trosset, Michael W., 2002. "Better initial configurations for metric multidimensional scaling," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 143-156, November.
    9. JinXing Che & YouLong Yang, 2017. "Stochastic correlation coefficient ensembles for variable selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1721-1742, July.
    10. Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Groenen, P.J.F. & van de Velden, M., 2004. "Multidimensional scaling," Econometric Institute Research Papers EI 2004-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Michael Brusco & Hans-Friedrich Köhn & Douglas Steinley, 2015. "An Exact Method for Partitioning Dichotomous Items Within the Framework of the Monotone Homogeneity Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 949-967, December.
    13. Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).
    14. repec:jss:jstsof:31:i03 is not listed on IDEAS
    15. Johannes Landsheer, 2014. "The co-occurrence of self-observed norm-conforming behavior, reduction of zero observations and remaining measurement quality," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(5), pages 2647-2656, September.
    16. Hannah E. M. Oosterhuis & L. Andries Ark & Klaas Sijtsma, 2017. "Standard Errors and Confidence Intervals of Norm Statistics for Educational and Psychological Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 559-588, September.
    17. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.
    18. S. Hess & E. Suárez & J. Camacho & G. Ramírez & B. Hernández, 2001. "Reliability of Coordinates Obtained by MINISSA Concerning the Order of Presented Stimuli," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(2), pages 117-128, May.
    19. Michael Brusco & Stephanie Stahl, 2005. "Optimal Least-Squares Unidimensional Scaling: Improved Branch-and-Bound Procedures and Comparison to Dynamic Programming," Psychometrika, Springer;The Psychometric Society, vol. 70(2), pages 253-270, June.
    20. Michael Brusco & Hans-Friedrich Köhn & Stephanie Stahl, 2008. "Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 503-522, September.
    21. van den Burg, G.J.J. & Groenen, P.J.F., 2014. "GenSVM: A Generalized Multiclass Support Vector Machine," Econometric Institute Research Papers EI 2014-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.