IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0156522.html
   My bibliography  Save this article

Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy

Author

Listed:
  • David Ayllón
  • Roberto Gil-Pita
  • Fernando Seoane

Abstract

Bioimpedance spectroscopy (BIS) measurement errors may be caused by parasitic stray capacitance, impedance mismatch, cross-talking or their very likely combination. An accurate detection and identification is of extreme importance for further analysis because in some cases and for some applications, certain measurement artifacts can be corrected, minimized or even avoided. In this paper we present a robust method to detect the presence of measurement artifacts and identify what kind of measurement error is present in BIS measurements. The method is based on supervised machine learning and uses a novel set of generalist features for measurement characterization in different immittance planes. Experimental validation has been carried out using a database of complex spectra BIS measurements obtained from different BIS applications and containing six different types of errors, as well as error-free measurements. The method obtained a low classification error (0.33%) and has shown good generalization. Since both the features and the classification schema are relatively simple, the implementation of this pre-processing task in the current hardware of bioimpedance spectrometers is possible.

Suggested Citation

  • David Ayllón & Roberto Gil-Pita & Fernando Seoane, 2016. "Detection and Classification of Measurement Errors in Bioimpedance Spectroscopy," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0156522
    DOI: 10.1371/journal.pone.0156522
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156522
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0156522&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0156522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brusco, Michael J., 2014. "A comparison of simulated annealing algorithms for variable selection in principal component analysis and discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 38-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daiva Stanelyte & Virginijus Radziukynas, 2019. "Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-26, December.
    2. Zhenzhong Wang & Zhengyuan Zhu & Cindy Yu, 2020. "Variable Selection in Macroeconomic Forecasting with Many Predictors," Papers 2007.10160, arXiv.org.
    3. JinXing Che & YouLong Yang, 2017. "Stochastic correlation coefficient ensembles for variable selection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(10), pages 1721-1742, July.
    4. Michael Brusco & Hannah J Stolze & Michaela Hoffman & Douglas Steinley, 2017. "A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    5. Ortelli, Nicola & Hillel, Tim & Pereira, Francisco C. & de Lapparent, Matthieu & Bierlaire, Michel, 2021. "Assisted specification of discrete choice models," Journal of choice modelling, Elsevier, vol. 39(C).
    6. Paz, Alexander & Arteaga, Cristian & Cobos, Carlos, 2019. "Specification of mixed logit models assisted by an optimization framework," Journal of choice modelling, Elsevier, vol. 30(C), pages 50-60.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0156522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.