IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0169096.html
   My bibliography  Save this article

The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific

Author

Listed:
  • Jacob J Bukoski
  • Jeremy S Broadhead
  • Daniel C Donato
  • Daniel Murdiyarso
  • Timothy G Gregoire

Abstract

Mangroves provide extensive ecosystem services that support local livelihoods and international environmental goals, including coastal protection, biodiversity conservation and the sequestration of carbon (C). While voluntary C market projects seeking to preserve and enhance forest C stocks offer a potential means of generating finance for mangrove conservation, their implementation faces barriers due to the high costs of quantifying C stocks through field inventories. To streamline C quantification in mangrove conservation projects, we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks for the mangroves of the Asia-Pacific. We compile datasets of mangrove biomass C (197 observations from 48 sites) and soil organic C (99 observations from 27 sites) to parameterize the predictive models, and use linear mixed effect models to model the expected C as a function of stand attributes. The most parsimonious biomass model predicts total biomass C stocks as a function of both basal area and the interaction between latitude and basal area, whereas the most parsimonious soil C model predicts soil C stocks as a function of the logarithmic transformations of both latitude and basal area. Random effects are specified by site for both models, which are found to explain a substantial proportion of variance within the estimation datasets and indicate significant heterogeneity across-sites within the region. The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha (18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is estimated at 4.9 mg C/cm3 (14.1% of mean soil C). The results point to a need for standardization of forest metrics to facilitate meta-analyses, as well as provide important considerations for refining ecosystem C stock models in mangroves.

Suggested Citation

  • Jacob J Bukoski & Jeremy S Broadhead & Daniel C Donato & Daniel Murdiyarso & Timothy G Gregoire, 2017. "The Use of Mixed Effects Models for Obtaining Low-Cost Ecosystem Carbon Stock Estimates in Mangroves of the Asia-Pacific," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0169096
    DOI: 10.1371/journal.pone.0169096
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169096
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169096&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0169096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Catherine E. Lovelock & Donald R. Cahoon & Daniel A. Friess & Glenn R. Guntenspergen & Ken W. Krauss & Ruth Reef & Kerrylee Rogers & Megan L. Saunders & Frida Sidik & Andrew Swales & Neil Saintilan & , 2015. "The vulnerability of Indo-Pacific mangrove forests to sea-level rise," Nature, Nature, vol. 526(7574), pages 559-563, October.
    2. M. Brander, Luke & J. Wagtendonk, Alfred & S. Hussain, Salman & McVittie, Alistair & Verburg, Peter H. & de Groot, Rudolf S. & van der Ploeg, Sander, 2012. "Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application," Ecosystem Services, Elsevier, vol. 1(1), pages 62-69.
    3. Erika Berenguer & Toby A Gardner & Joice Ferreira & Luiz E O C Aragão & Plínio B Camargo & Carlos E Cerri & Mariana Durigan & Raimundo C Oliveira Junior & Ima C G Vieira & Jos Barlow, 2015. "Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-19, August.
    4. Daniel Murdiyarso & Joko Purbopuspito & J. Boone Kauffman & Matthew W. Warren & Sigit D. Sasmito & Daniel C. Donato & Solichin Manuri & Haruni Krisnawati & Sartji Taberima & Sofyan Kurnianto, 2015. "The potential of Indonesian mangrove forests for global climate change mitigation," Nature Climate Change, Nature, vol. 5(12), pages 1089-1092, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Fu & Naiwen Li, 2019. "Tradeoff between Hydropower and River Visual Landscape Services in Mountainous Areas," Sustainability, MDPI, vol. 11(19), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minerva Singh & Luitgard Schwendenmann & Gang Wang & Maria Fernanda Adame & Luís Junior Comissario Mandlate, 2022. "Changes in Mangrove Carbon Stocks and Exposure to Sea Level Rise (SLR) under Future Climate Scenarios," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    2. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    3. Jirawat Panpeng & Mokbul Morshed Ahmad, 2017. "Vulnerability of Fishing Communities from Sea-Level Change: A Study of Laemsing District in Chanthaburi Province, Thailand," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    4. Rudianto Rudianto & Dietriech G. Bengen & Fery Kurniawan, 2020. "Causes and Effects of Mangrove Ecosystem Damage on Carbon Stocks and Absorption in East Java, Indonesia," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    5. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Meli F. Saragi-Sasmito & Daniel Murdiyarso & Tania June & Sigit D. Sasmito, 2019. "Carbon stocks, emissions, and aboveground productivity in restored secondary tropical peat swamp forests," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 521-533, April.
    7. Rao, Nalini S. & Ghermandi, Andrea & Portela, Rosimeiry & Wang, Xuanwen, 2015. "Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values," Ecosystem Services, Elsevier, vol. 11(C), pages 95-105.
    8. Palola, Pirta & Bailey, Richard & Wedding, Lisa, 2022. "A novel framework to operationalise value-pluralism in environmental valuation: Environmental value functions," Ecological Economics, Elsevier, vol. 193(C).
    9. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    11. Leon Yan-Feng Gaw & Alex Thiam Koon Yee & Daniel Rex Richards, 2019. "A High-Resolution Map of Singapore’s Terrestrial Ecosystems," Data, MDPI, vol. 4(3), pages 1-10, August.
    12. Pettinotti, Laetitia & de Ayala, Amaia & Ojea, Elena, 2018. "Benefits From Water Related Ecosystem Services in Africa and Climate Change," Ecological Economics, Elsevier, vol. 149(C), pages 294-305.
    13. Angelo F. Bernardino & Ana Carolina A. Mazzuco & Rodolfo F. Costa & Fernanda Souza & Margaret A. Owuor & Gabriel N. Nobrega & Christian J. Sanders & Tiago O. Ferreira & J. Boone Kauffman, 2024. "The inclusion of Amazon mangroves in Brazil’s REDD+ program," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Chaikumbung, Mayula & Doucouliagos, Hristos & Scarborough, Helen, 2016. "The economic value of wetlands in developing countries: A meta-regression analysis," Ecological Economics, Elsevier, vol. 124(C), pages 164-174.
    15. Avit K. Bhowmik & Rajchandar Padmanaban & Pedro Cabral & Maria M. Romeiras, 2022. "Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    16. Akbar Hossain Kanan & Francesco Pirotti & Mauro Masiero & Md Masudur Rahman, 2023. "Mapping inundation from sea level rise and its interaction with land cover in the Sundarbans mangrove forest," Climatic Change, Springer, vol. 176(8), pages 1-22, August.
    17. Prieur, Jacques, 2020. "Critical warning! Preventing the multidimensional apocalypse on planet Earth," Ecosystem Services, Elsevier, vol. 45(C).
    18. Kanokporn Swangjang, 2022. "Linkage of Sustainability to Environmental Impact Assessment Using the Concept of Ecosystem Services: Lessons from Thailand," Sustainability, MDPI, vol. 14(9), pages 1-18, May.
    19. Iis Alviya & Tapan Sarker & Harsha Sarvaiya & Md Sayed Iftekhar, 2021. "Role of the Land-Based Private Sector in Low-Emission Development: An Indonesian Case," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    20. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0169096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.