IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0168113.html
   My bibliography  Save this article

Myoinositol as a Biomarker in Recurrent Glioblastoma Treated with Bevacizumab: A 1H-Magnetic Resonance Spectroscopy Study

Author

Listed:
  • Eike Steidl
  • Ulrich Pilatus
  • Elke Hattingen
  • Joachim P Steinbach
  • Friedhelm Zanella
  • Michael W Ronellenfitsch
  • Oliver Bähr

Abstract

Background: Antiangiogenic treatment of glioblastomas with Bevacizumab lacks predictive markers. Myoinositol (MI) is an organic osmolyte, with intracellular concentration changes depending on the extracellular osmolality. Since Bevacizumab markedly reduces tumor edema and influences the tumor microenvironment, we investigated whether the MI concentration in the tumor changes during therapy. Methods: We used 1H-magnetic resonance spectroscopy to measure the MI concentrations in the tumor and contralateral control tissue of 39 prospectively recruited patients with recurrent glioblastomas before and 8–12 weeks after starting therapy. 30 patients received Bevacizumab and 9 patients were treated with CCNU/VM26 as control. We performed a survival analysis to evaluate MI as a predictive biomarker for Bevacizumab therapy. Results: MI concentrations increased significantly during Bevacizumab therapy in tumor (p 1,817 mmol/l. No differences were observed for the relative changes or the post treatment concentrations. Additionally calculated creatine concentrations showed no differences in between subgroups or between pre and post treatment measurements. Conclusion: Our data suggest that recurrent glioblastoma shows a strong metabolic reaction to Bevacizumab. Further, our results support the hypothesis that MI might be a marker for early tumor cell invasion. Pre-therapeutic MI concentrations are predictive of overall survival in patients with recurrent glioblastoma treated with Bevacizumab.

Suggested Citation

  • Eike Steidl & Ulrich Pilatus & Elke Hattingen & Joachim P Steinbach & Friedhelm Zanella & Michael W Ronellenfitsch & Oliver Bähr, 2016. "Myoinositol as a Biomarker in Recurrent Glioblastoma Treated with Bevacizumab: A 1H-Magnetic Resonance Spectroscopy Study," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
  • Handle: RePEc:plo:pone00:0168113
    DOI: 10.1371/journal.pone.0168113
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0168113
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0168113&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0168113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Budczies & Frederick Klauschen & Bruno V Sinn & Balázs Győrffy & Wolfgang D Schmitt & Silvia Darb-Esfahani & Carsten Denkert, 2012. "Cutoff Finder: A Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Sheng & Yun-Peng Yang & Yu-Xiang Ma & Tao Qin & Zhi-Huang Hu & Shao-Dong Hong & Ting Zhou & Yan Huang & Hong-Yun Zhao & Li Zhang, 2016. "Low Prognostic Nutritional Index Correlates with Worse Survival in Patients with Advanced NSCLC following EGFR-TKIs," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
    2. B Rey deCastro, 2019. "Cumulative ROC curves for discriminating three or more ordinal outcomes with cutpoints on a shared continuous measurement scale," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    3. Claudia Bühnemann & Simon Li & Haiyue Yu & Harriet Branford White & Karl L Schäfer & Antonio Llombart-Bosch & Isidro Machado & Piero Picci & Pancras C W Hogendoorn & Nicholas A Athanasou & J Alison No, 2014. "Quantification of the Heterogeneity of Prognostic Cellular Biomarkers in Ewing Sarcoma Using Automated Image and Random Survival Forest Analysis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
    4. Hyungjin Kim & Chang Min Park & Bhumsuk Keam & Sang Joon Park & Miso Kim & Tae Min Kim & Dong-Wan Kim & Dae Seog Heo & Jin Mo Goo, 2017. "The prognostic value of CT radiomic features for patients with pulmonary adenocarcinoma treated with EGFR tyrosine kinase inhibitors," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-13, November.
    5. Douglas Adamoski & Larissa M. dos Reis & Ana Carolina Paschoalini Mafra & Felipe Corrêa-da-Silva & Pedro Manoel Mendes de Moraes-Vieira & Ioana Berindan-Neagoe & George A. Calin & Sandra Martha Gomes , 2024. "HuR controls glutaminase RNA metabolism," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Özge Özgüç & Ludmilla de Plater & Varun Kapoor & Anna Francesca Tortorelli & Andrew G Clark & Jean-Léon Maître, 2022. "Cortical softening elicits zygotic contractility during mouse preimplantation development," PLOS Biology, Public Library of Science, vol. 20(3), pages 1-23, March.
    7. Elisa I. Rivas & Jenniffer Linares & Melissa Zwick & Andrea Gómez-Llonin & Marc Guiu & Anna Labernadie & Jordi Badia-Ramentol & Anna Lladó & Lídia Bardia & Iván Pérez-Núñez & Carolina Martínez-Ciarpag, 2022. "Targeted immunotherapy against distinct cancer-associated fibroblasts overcomes treatment resistance in refractory HER2+ breast tumors," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0168113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.