IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0162817.html
   My bibliography  Save this article

From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

Author

Listed:
  • Gayane Aghakhanyan
  • Paolo Bonanni
  • Giovanna Randazzo
  • Sara Nappi
  • Federica Tessarotto
  • Lara De Martin
  • Francesca Frijia
  • Daniele De Marchi
  • Francesco De Masi
  • Beate Kuppers
  • Francesco Lombardo
  • Davide Caramella
  • Domenico Montanaro

Abstract

Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

Suggested Citation

  • Gayane Aghakhanyan & Paolo Bonanni & Giovanna Randazzo & Sara Nappi & Federica Tessarotto & Lara De Martin & Francesca Frijia & Daniele De Marchi & Francesco De Masi & Beate Kuppers & Francesco Lombar, 2016. "From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0162817
    DOI: 10.1371/journal.pone.0162817
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162817
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0162817&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0162817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia H. Janak & Kay M. Tye, 2015. "From circuits to behaviour in the amygdala," Nature, Nature, vol. 517(7534), pages 284-292, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Mariusz Mucha & Anna E. Skrzypiec & Jaison B. Kolenchery & Valentina Brambilla & Satyam Patel & Alberto Labrador-Ramos & Lucja Kudla & Kathryn Murrall & Nathan Skene & Violetta Dymicka-Piekarska & Aga, 2023. "miR-483-5p offsets functional and behavioural effects of stress in male mice through synapse-targeted repression of Pgap2 in the basolateral amygdala," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Feng Zhou & Weihua Zhao & Ziyu Qi & Yayuan Geng & Shuxia Yao & Keith M. Kendrick & Tor D. Wager & Benjamin Becker, 2021. "A distributed fMRI-based signature for the subjective experience of fear," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Dheeraj S. Roy & Young-Gyun Park & Minyoung E. Kim & Ying Zhang & Sachie K. Ogawa & Nicholas DiNapoli & Xinyi Gu & Jae H. Cho & Heejin Choi & Lee Kamentsky & Jared Martin & Olivia Mosto & Tomomi Aida , 2022. "Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. In Bum Lee & Eugene Lee & Na-Eun Han & Marko Slavuj & Jeong Wook Hwang & Ahrim Lee & Taeyoung Sun & Yehwan Jeong & Ja-Hyun Baik & Jae-Yong Park & Se-Young Choi & Jeehyun Kwag & Bong-June Yoon, 2024. "Persistent enhancement of basolateral amygdala-dorsomedial striatum synapses causes compulsive-like behaviors in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Carole Morel & Sarah E. Montgomery & Long Li & Romain Durand-de Cuttoli & Emily M. Teichman & Barbara Juarez & Nikos Tzavaras & Stacy M. Ku & Meghan E. Flanigan & Min Cai & Jessica J. Walsh & Scott J., 2022. "Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Lahti, Tom & Halko, Marja-Liisa & Karagozoglu, Necmi & Wincent, Joakim, 2019. "Why and how do founding entrepreneurs bond with their ventures? Neural correlates of entrepreneurial and parental bonding," Journal of Business Venturing, Elsevier, vol. 34(2), pages 368-388.
    9. Kazuhisa Shibata & Takeo Watanabe & Mitsuo Kawato & Yuka Sasaki, 2016. "Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States," PLOS Biology, Public Library of Science, vol. 14(9), pages 1-27, September.
    10. Hansol Lim & Yue Zhang & Christian Peters & Tobias Straub & Johanna Luise Mayer & Rüdiger Klein, 2024. "Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Owen Y. Chao & Salil Saurav Pathak & Hao Zhang & George J. Augustine & Jason M. Christie & Chikako Kikuchi & Hiroki Taniguchi & Yi-Mei Yang, 2023. "Social memory deficit caused by dysregulation of the cerebellar vermis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0162817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.