IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0162043.html
   My bibliography  Save this article

Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data

Author

Listed:
  • Hongsheng Qi
  • Meiqi Liu
  • Dianhai Wang
  • Mengwei Chen

Abstract

Traffic congestion varies spatially and temporally. The observation of the formation, propagation and dispersion of network traffic congestion can lead to insights about the network performance, the bottleneck dynamics etc. While many researchers use the traffic flow data to reconstruct the congestion profile, the data missing problem is bypassed. Current methods either omit the missing data or supplement the missing part by average etc. Great error may be introduced during these processes. Rather than simply discarding the missing data, this research regards the data missing event as a result of either the severe congestion which prevent the floating vehicle from entering the congested area, or a type of feature of the resulting traffic flow time series. Hence a new traffic flow operational index time series similarity measurement is expected to be established as a basis of identifying the dynamic network bottleneck. The method first measures the traffic flow operational similarity between pairs of neighboring links, and then the similarity results are used to cluster the spatial-temporal congestion. In order to get the similarity under missing data condition, the measurement is implemented in a two-stage manner: firstly the so called first order similarity is calculated given that the traffic flow variables are bounded both upside and downside; then the first order similarity is aggregated to generate the second order similarity as the output. We implement the method on part of the real-world road network; the results generated are not only consistent with empirical observation, but also provide useful insights.

Suggested Citation

  • Hongsheng Qi & Meiqi Liu & Dianhai Wang & Mengwei Chen, 2016. "Spatial-Temporal Congestion Identification Based on Time Series Similarity Considering Missing Data," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0162043
    DOI: 10.1371/journal.pone.0162043
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162043
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0162043&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0162043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tang, T.Q. & Li, P. & Yang, X.B., 2013. "An extended macro model for traffic flow with consideration of multi static bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3537-3545.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    2. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    3. Cen, Bing-ling & Xue, Yu & Zhang, Yi-cai & Wang, Xue & He, Hong-di, 2020. "A feedback control method with consideration of the next-nearest-neighbor interactions in a lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    5. Qingtao, Zhai & Hongxia, Ge & Rongjun, Cheng, 2018. "An extended continuum model considering optimal velocity change with memory and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 774-785.
    6. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    7. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    8. Rezaei, Danial & Aghayan, Iman & Hadadi, Farhad, 2021. "Studying perturbations and wave propagations by lane closures on traffic characteristics based on a dynamic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Jin, Zhizhan & Li, Zhipeng & Cheng, Rongjun & Ge, Hongxia, 2018. "Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 278-288.
    10. Zhao, Jing & Li, Peng, 2016. "An extended car-following model with consideration of speed guidance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 1-8.
    11. Liu, Huaqing & Zheng, Pengjun & Zhu, Keqiang & Ge, Hongxia, 2015. "KdV–Burgers equation in the modified continuum model considering anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 26-31.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0162043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.