IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v438y2015icp26-31.html
   My bibliography  Save this article

KdV–Burgers equation in the modified continuum model considering anticipation effect

Author

Listed:
  • Liu, Huaqing
  • Zheng, Pengjun
  • Zhu, Keqiang
  • Ge, Hongxia

Abstract

The new continuum model mentioned in this paper is developed based on optimal velocity car-following model, which takes the drivers’ anticipation effect into account. The critical condition for traffic flow is derived, and nonlinear analysis shows density waves occur in traffic flow because of the small disturbance. Near the neutral stability line, the KdV–Burgers equation is derived and one of the solutions is given. Numerical simulation is carried out to show the local cluster described by the model.

Suggested Citation

  • Liu, Huaqing & Zheng, Pengjun & Zhu, Keqiang & Ge, Hongxia, 2015. "KdV–Burgers equation in the modified continuum model considering anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 26-31.
  • Handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:26-31
    DOI: 10.1016/j.physa.2015.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711500429X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.
    2. Peng, G.H., 2012. "A study of wide moving jams in a new lattice model of traffic flow with the consideration of the driver anticipation effect and numerical simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5971-5977.
    3. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    4. Zhipeng Li & Yuncai Liu & Fuqiang Liu, 2007. "A Dynamical Model With Next-Nearest-Neighbor Interaction In Relative Velocity," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 819-832.
    5. Tang, T.Q. & Li, P. & Yang, X.B., 2013. "An extended macro model for traffic flow with consideration of multi static bottlenecks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3537-3545.
    6. Zhang, H. M., 1998. "A theory of nonequilibrium traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 32(7), pages 485-498, September.
    7. Zhang, H. M., 2003. "Anisotropic property revisited--does it hold in multi-lane traffic?," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 561-577, July.
    8. Herrmann, Matthias & Kerner, Boris S, 1998. "Local cluster effect in different traffic flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 255(1), pages 163-188.
    9. Peng, Guang-han & Cheng, Rong-jun, 2013. "A new car-following model with the consideration of anticipation optimal velocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3563-3569.
    10. Zhu, Wen-Xing, 2013. "Analysis of CO2 emission in traffic flow and numerical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4787-4792.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    2. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    3. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    4. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohan, Ranju & Ramadurai, Gitakrishnan, 2021. "Multi-class traffic flow model based on three dimensional flow–concentration surface," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 577(C).
    2. Rongjun, Cheng & Hongxia, Ge & Jufeng, Wang, 2018. "The nonlinear analysis for a new continuum model considering anticipation and traffic jerk effect," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 493-505.
    3. Fan, De-li & Zhang, Yi-cai & Shi, Yin & Xue, Yu & Wei, Fang-ping, 2018. "An extended continuum traffic model with the consideration of the optimal velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 402-413.
    4. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    5. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2018. "Nonlinear analysis for a modified continuum model considering driver’s memory and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 18-27.
    6. Zheng, Liang & Jin, Peter J. & Huang, Helai, 2015. "An anisotropic continuum model considering bi-directional information impact," Transportation Research Part B: Methodological, Elsevier, vol. 75(C), pages 36-57.
    7. Lyu, Hao & Cheng, Rongjun & Ge, Hongxia, 2022. "Bifurcation analysis of an extended macro model considering time delay and anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    10. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    11. Zhai, Cong & Wu, Weitiao, 2021. "A continuous traffic flow model considering predictive headway variation and preceding vehicle’s taillight effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    12. Jafaripournimchahi, Ammar & Cai, Yingfeng & Wang, Hai & Sun, Lu & Yang, Biao, 2022. "Stability analysis of delayed-feedback control effect in the continuum traffic flow of autonomous vehicles without V2I communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    13. Cen, Bing-ling & Xue, Yu & Xia, Yu-xian & Zhang, Kun & Zhou, Ji, 2024. "Analysis of the macroscopic effect of a driver’s desired velocity on traffic flow characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    14. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    15. Peng, Guanghan & Xu, Mingzuo & Tan, Huili, 2024. "Phase transition in a new heterogeneous macro continuum model of traffic flow under rain and snow weather environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    16. Ou, Hui & Tang, Tie-Qiao, 2018. "Impacts of moving bottlenecks on traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 131-138.
    17. Rezaei, Danial & Aghayan, Iman & Hadadi, Farhad, 2021. "Studying perturbations and wave propagations by lane closures on traffic characteristics based on a dynamic approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. Salim Mammar & Jean-Patrick Lebacque & Habib Haj Salem, 2009. "Riemann Problem Resolution and Godunov Scheme for the Aw-Rascle-Zhang Model," Transportation Science, INFORMS, vol. 43(4), pages 531-545, November.
    19. W.-L. Jin & H. M. Zhang, 2003. "The Inhomogeneous Kinematic Wave Traffic Flow Model as a Resonant Nonlinear System," Transportation Science, INFORMS, vol. 37(3), pages 294-311, August.
    20. Jiang, Rui & Wu, Qing-Song & Zhu, Zuo-Jin, 2002. "A new continuum model for traffic flow and numerical tests," Transportation Research Part B: Methodological, Elsevier, vol. 36(5), pages 405-419, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:26-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.