IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159753.html
   My bibliography  Save this article

Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise

Author

Listed:
  • Leah H Beckett
  • Andrew H Baldwin
  • Michael S Kearney

Abstract

Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.

Suggested Citation

  • Leah H Beckett & Andrew H Baldwin & Michael S Kearney, 2016. "Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0159753
    DOI: 10.1371/journal.pone.0159753
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159753
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159753&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Asbury H. Sallenger & Kara S. Doran & Peter A. Howd, 2012. "Hotspot of accelerated sea-level rise on the Atlantic coast of North America," Nature Climate Change, Nature, vol. 2(12), pages 884-888, December.
    2. Linda A. Deegan & David Samuel Johnson & R. Scott Warren & Bruce J. Peterson & John W. Fleeger & Sergio Fagherazzi & Wilfred M. Wollheim, 2012. "Coastal eutrophication as a driver of salt marsh loss," Nature, Nature, vol. 490(7420), pages 388-392, October.
    3. Paul B. Goddard & Jianjun Yin & Stephen M. Griffies & Shaoqing Zhang, 2015. "An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    4. Edward L. Webb & Daniel A. Friess & Ken W. Krauss & Donald R. Cahoon & Glenn R. Guntenspergen & Jacob Phelps, 2013. "A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise," Nature Climate Change, Nature, vol. 3(5), pages 458-465, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amr E. Keshta & J. C. Alexis Riter & Kamal H. Shaltout & Andrew H. Baldwin & Michael Kearney & Ahmed Sharaf El-Din & Ebrahem M. Eid, 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    2. Rebekah Grieger & Samantha J. Capon & Wade L. Hadwen & Brendan Mackey, 2020. "Between a bog and a hard place: a global review of climate change effects on coastal freshwater wetlands," Climatic Change, Springer, vol. 163(1), pages 161-179, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Watson & A. Oczkowski & C. Wigand & A. Hanson & E. Davey & S. Crosby & R. Johnson & H. Andrews, 2014. "Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern U.S," Climatic Change, Springer, vol. 125(3), pages 501-509, August.
    2. Zafer Defne & Alfredo L Aretxabaleta & Neil K Ganju & Tarandeep S Kalra & Daniel K Jones & Kathryn E L Smith, 2020. "A geospatially resolved wetland vulnerability index: Synthesis of physical drivers," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-27, January.
    3. Leonard O. Ohenhen & Manoochehr Shirzaei & Chandrakanta Ojha & Matthew L. Kirwan, 2023. "Hidden vulnerability of US Atlantic coast to sea-level rise due to vertical land motion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. repec:ags:aaea22:335970 is not listed on IDEAS
    5. Andrés García-Ruiz & Manuel Díez-Minguito & Konstantin Verichev & Manuel Carpio, 2024. "Bibliometric Analysis of Urban Coastal Development: Strategies for Climate-Resilient Timber Housing," Sustainability, MDPI, vol. 16(4), pages 1-25, February.
    6. Guandong Li & Torbjörn E. Törnqvist & Sönke Dangendorf, 2024. "Real-world time-travel experiment shows ecosystem collapse due to anthropogenic climate change," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Nils-Axel Mörner, 2013. "Sea Level Changes past Records and Future Expectations," Energy & Environment, , vol. 24(3-4), pages 509-536, June.
    8. Kristin C. Burkholder & Jessica Devereaux & Caroline Grady & Molly Solitro & Susan M. Mooney, 2017. "Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Learning: Initial Results," Sustainability, MDPI, vol. 9(6), pages 1-28, May.
    9. Denis L. Volkov & Kate Zhang & William E. Johns & Joshua K. Willis & Will Hobbs & Marlos Goes & Hong Zhang & Dimitris Menemenlis, 2023. "Atlantic meridional overturning circulation increases flood risk along the United States southeast coast," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Julie Milovanovic & Tripp Shealy & Leidy Klotz & Eric J. Johnson & Elke U. Weber, 2022. "Pictures Matter: How Images of Projected Sea-Level Rise Shape Long-Term Sustainable Design Decisions for Infrastructure Systems," Sustainability, MDPI, vol. 14(5), pages 1-16, March.
    11. David Safari & Grant C Edwards & Faustina Gyabaah, 2020. "Diurnal and Seasonal Variation of CO2 and CH4 Fluxes in Tomago Wetland," International Journal of Sciences, Office ijSciences, vol. 9(01), pages 41-51, January.
    12. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    13. Albert Parker, 2013. "Oscillations of sea level rise along the Atlantic coast of North America north of Cape Hatteras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 991-997, January.
    14. Jamie AR Haverkamp, 2017. "Politics, values, and reflexivity: The case of adaptation to climate change in Hampton Roads, Virginia," Environment and Planning A, , vol. 49(11), pages 2673-2692, November.
    15. James Neumann & Kerry Emanuel & Sai Ravela & Lindsay Ludwig & Paul Kirshen & Kirk Bosma & Jeremy Martinich, 2015. "Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy," Climatic Change, Springer, vol. 129(1), pages 337-349, March.
    16. Parker Albert, 2016. "Coldspot of Decelerated Sea-Level Rise on the Pacific Coast of North America," Quaestiones Geographicae, Sciendo, vol. 35(3), pages 31-37, September.
    17. Wenjia Hu & Weiwei Yu & Zhiyuan Ma & Guanqiong Ye & Ersha Dang & Hao Huang & Dian Zhang & Bin Chen, 2019. "Assessing the Ecological Sensitivity of Coastal Marine Ecosystems: A Case Study in Xiamen Bay, China," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    18. Mary Bryan Barksdale & Christopher J. Hein & Matthew L. Kirwan, 2023. "Shoreface erosion counters blue carbon accumulation in transgressive barrier-island systems," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    19. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    20. Amr E. Keshta & J. C. Alexis Riter & Kamal H. Shaltout & Andrew H. Baldwin & Michael Kearney & Ahmed Sharaf El-Din & Ebrahem M. Eid, 2022. "Loss of Coastal Wetlands in Lake Burullus, Egypt: A GIS and Remote-Sensing Study," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    21. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.