IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159265.html
   My bibliography  Save this article

Quantitative Modelling of Trace Elements in Hard Coal

Author

Listed:
  • Adam Smoliński
  • Natalia Howaniec

Abstract

The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

Suggested Citation

  • Adam Smoliński & Natalia Howaniec, 2016. "Quantitative Modelling of Trace Elements in Hard Coal," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-13, July.
  • Handle: RePEc:plo:pone00:0159265
    DOI: 10.1371/journal.pone.0159265
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159265
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159265&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Howaniec, Natalia & Smoliński, Adam, 2014. "Influence of fuel blend ash components on steam co-gasification of coal and biomass – Chemometric study," Energy, Elsevier, vol. 78(C), pages 814-825.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    2. Bouraoui, Zeineb & Jeguirim, Mejdi & Guizani, Chamseddine & Limousy, Lionel & Dupont, Capucine & Gadiou, Roger, 2015. "Thermogravimetric study on the influence of structural, textural and chemical properties of biomass chars on CO2 gasification reactivity," Energy, Elsevier, vol. 88(C), pages 703-710.
    3. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    4. Howaniec, Natalia & Smoliński, Adam, 2017. "Biowaste utilization in the process of co-gasification with bituminous coal and lignite," Energy, Elsevier, vol. 118(C), pages 18-23.
    5. Adam Smoliński & Natalia Howaniec & Andrzej Bąk, 2018. "Utilization of Energy Crops and Sewage Sludge in the Process of Co-Gasification for Sustainable Hydrogen Production," Energies, MDPI, vol. 11(4), pages 1-8, March.
    6. Melikoglu, Mehmet, 2017. "Vision 2023: Status quo and future of biomass and coal for sustainable energy generation in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 800-808.
    7. Ricardo A. Narváez C. & Richard Blanchard & Roger Dixon & Valeria Ramírez & Diego Chulde, 2018. "Low-Cost Syngas Shifting for Remote Gasifiers: Combination of CO 2 Adsorption and Catalyst Addition in a Novel and Simplified Packed Structure," Energies, MDPI, vol. 11(2), pages 1-16, February.
    8. Zhan, Honglei & Zhao, Kun & Xiao, Lizhi, 2015. "Spectral characterization of the key parameters and elements in coal using terahertz spectroscopy," Energy, Elsevier, vol. 93(P1), pages 1140-1145.
    9. Iwaszenko, Sebastian & Howaniec, Natalia & Smoliński, Adam, 2019. "Determination of random pore model parameters for underground coal gasification simulation," Energy, Elsevier, vol. 166(C), pages 972-978.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.