IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159249.html
   My bibliography  Save this article

Understanding the Dynamic Convergence Phenomenon from the Perspective of Diversity and Persistence: A Cross-Sector Comparative Analysis between the United States and South Korea

Author

Listed:
  • We Shim
  • Oh-jin Kwon
  • Yeong-ho Moon
  • Keun-hwan Kim

Abstract

This study was designed to improve the explanation for the behavior of the phenomenon of technology convergence. The concepts and measurements of diversity and persistence, as inherent attributes of the phenomenon, were elaborated by reviewing different theories. Diversity was examined by analyzing the degree of capability to absorb heterogeneous technologies, while persistence was investigated by analyzing the degree of continuity in the usage of cumulated technologies. With these two dimensions, an analytic framework was proposed to compare the differences and dynamic patterns of convergence competence by countries at the technology sector level. Three major technology sectors in the United States and South Korea, namely, information and communication technology, biotechnology, and nanotechnology, were explored to explicitly illustrate the differences in technology convergence competence. The results show that although Korea has narrowed the differences of capabilities for technology convergence compared to the US, Korea not only has to continuously pursue the improvement of specialization for all three sectors, but also has to encourage the exploitation of different technology fields. The suggested framework and indicators allow for monitoring of the dynamic patterns of a technology sector and identifying the sources of the gaps. Thus, the framework and indicators are able to ensure the purpose of government innovation policy and to provide strategic directions for redistributing the proper combination of sources to accomplish technology convergence.

Suggested Citation

  • We Shim & Oh-jin Kwon & Yeong-ho Moon & Keun-hwan Kim, 2016. "Understanding the Dynamic Convergence Phenomenon from the Perspective of Diversity and Persistence: A Cross-Sector Comparative Analysis between the United States and South Korea," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-29, July.
  • Handle: RePEc:plo:pone00:0159249
    DOI: 10.1371/journal.pone.0159249
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159249
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159249&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cefis, Elena & Orsenigo, Luigi, 2001. "The persistence of innovative activities: A cross-countries and cross-sectors comparative analysis," Research Policy, Elsevier, vol. 30(7), pages 1139-1158, August.
    2. Archibugi, Daniele & Coco, Alberto, 2005. "Measuring technological capabilities at the country level: A survey and a menu for choice," Research Policy, Elsevier, vol. 34(2), pages 175-194, March.
    3. Archibugi, Daniele & Coco, Alberto, 2004. "A New Indicator of Technological Capabilities for Developed and Developing Countries (ArCo)," World Development, Elsevier, vol. 32(4), pages 629-654, April.
    4. Andy Stirling, 2007. "A General Framework for Analysing Diversity in Science, Technology and Society," SPRU Working Paper Series 156, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Brusoni, Stefano & Geuna, Aldo, 2003. "An international comparison of sectoral knowledge bases: persistence and integration in the pharmaceutical industry," Research Policy, Elsevier, vol. 32(10), pages 1897-1912, December.
    6. Geroski, P. A. & Van Reenen, J. & Walters, C. F., 1997. "How persistently do firms innovate?," Research Policy, Elsevier, vol. 26(1), pages 33-48, March.
    7. Malerba, Franco & Orsenigo, Luigi & Peretto, Pietro, 1997. "Persistence of innovative activities, sectoral patterns of innovation and international technological specialization," International Journal of Industrial Organization, Elsevier, vol. 15(6), pages 801-826, October.
    8. Robert M. Grant, 1996. "Prospering in Dynamically-Competitive Environments: Organizational Capability as Knowledge Integration," Organization Science, INFORMS, vol. 7(4), pages 375-387, August.
    9. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    10. Suzuki, Jun & Kodama, Fumio, 2004. "Technological diversity of persistent innovators in Japan: Two case studies of large Japanese firms," Research Policy, Elsevier, vol. 33(3), pages 531-549, April.
    11. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    12. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    13. Castellacci, Fulvio & Archibugi, Daniele, 2008. "The technology clubs: The distribution of knowledge across nations," Research Policy, Elsevier, vol. 37(10), pages 1659-1673, December.
    14. Elster,Jon, 1983. "Explaining Technical Change," Cambridge Books, Cambridge University Press, number 9780521270724, October.
    15. Loet Leydesdorff, 2015. "Can technology life-cycles be indicated by diversity in patent classifications? The crucial role of variety," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1441-1451, December.
    16. Zoltan J. Acs & Luc Anselin & Attila Varga, 2008. "Patents and Innovation Counts as Measures of Regional Production of New Knowledge," Chapters, in: Entrepreneurship, Growth and Public Policy, chapter 11, pages 135-151, Edward Elgar Publishing.
    17. Sándor Soós & George Kampis, 2012. "Beyond the basemap of science: mapping multiple structures in research portfolios: evidence from Hungary," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 869-891, December.
    18. Nelson, Richard R & Wright, Gavin, 1992. "The Rise and Fall of American Technological Leadership: The Postwar Era in Historical Perspective," Journal of Economic Literature, American Economic Association, vol. 30(4), pages 1931-1964, December.
    19. Lemola, Tarmo, 2002. "Convergence of national science and technology policies: the case of Finland," Research Policy, Elsevier, vol. 31(8-9), pages 1481-1490, December.
    20. Fagerberg, Jan & Srholec, Martin & Knell, Mark, 2007. "The Competitiveness of Nations: Why Some Countries Prosper While Others Fall Behind," World Development, Elsevier, vol. 35(10), pages 1595-1620, October.
    21. Sanjeev Dewan & Kenneth L. Kraemer, 2000. "Information Technology and Productivity: Evidence from Country-Level Data," Management Science, INFORMS, vol. 46(4), pages 548-562, April.
    22. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    23. Cameron, Gavin & Proudman, James & Redding, Stephen, 2005. "Technological convergence, R&D, trade and productivity growth," European Economic Review, Elsevier, vol. 49(3), pages 775-807, April.
    24. K. Debackere & M. Luwel & Reinhilde Veugelers, 1999. "Can technology lead to a competitive advantage? A case study of Flanders using european patent data," Scientometrics, Springer;Akadémiai Kiadó, vol. 44(3), pages 379-400, March.
    25. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    26. Alan L. Porter & Ismael Rafols, 2009. "Is science becoming more interdisciplinary? Measuring and mapping six research fields over time," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(3), pages 719-745, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lin & Sun, Mengting & Peng, Yujie & Zhao, Wenjing & Chen, Lixin & Huang, Ying, 2022. "How public investment fuels innovation: Clues from government-subsidized USPTO patents," Journal of Informetrics, Elsevier, vol. 16(3).
    2. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    3. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandra Colombelli & Francesco Quatraro, 2014. "The persistence of firms' knowledge base: a quantile approach to Italian data," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(7), pages 585-610, October.
    2. Loet Leydesdorff & Caroline S. Wagner & Lutz Bornmann, 2018. "Betweenness and diversity in journal citation networks as measures of interdisciplinarity—A tribute to Eugene Garfield," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 567-592, February.
    3. Rakas, Marija & Hain, Daniel S., 2019. "The state of innovation system research: What happens beneath the surface?," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    4. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    5. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    6. Ronald Rousseau, 2018. "The repeat rate: from Hirschman to Stirling," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 645-653, July.
    7. Sándor Soós & Zsófia Vida & András Schubert, 2018. "Long-term trends in the multidisciplinarity of some typical natural and social sciences, and its implications on the SSH versus STM distinction," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 795-822, March.
    8. Lina Xu & Steven Dellaportas & Zhiqiang Yang & Jin Wang, 2023. "More on the relationship between interdisciplinary accounting research and citation impact," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(4), pages 4779-4803, December.
    9. Lorenzo Cassi & Wilfriedo Mescheba & Élisabeth Turckheim, 2014. "How to evaluate the degree of interdisciplinarity of an institution?," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1871-1895, December.
    10. Lawson, Cornelia & Soós,Sándor, 2014. "A Thematic Mobility Measure for Econometric Analysis," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201408, University of Turin.
    11. Shiji Chen & Yanhui Song & Fei Shu & Vincent Larivière, 2022. "Interdisciplinarity and impact: the effects of the citation time window," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2621-2642, May.
    12. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    13. Fei Shu & Jesse David Dinneen & Shiji Chen, 2022. "Measuring the disparity among scientific disciplines using Library of Congress Subject Headings," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3613-3628, June.
    14. Xuefeng Wang & Zhinan Wang & Ying Huang & Yun Chen & Yi Zhang & Huichao Ren & Rongrong Li & Jinhui Pang, 2017. "Measuring interdisciplinarity of a research system: detecting distinction between publication categories and citation categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2023-2039, June.
    15. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    16. Cristiano Antonelli & Francesco Crespi & Giuseppe Scellato, 2013. "Internal and external factors in innovation persistence," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 22(3), pages 256-280, April.
    17. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    18. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    19. Rinaldo Evangelista & Valentina Meliciani & Antonio Vezzani, 2019. "Fast Growing and Key Enabling Technologies and their impact on regional growth inEurope," Working Papers 42, Birkbeck Centre for Innovation Management Research, revised Feb 2021.
    20. Garcia Martinez, Marian & Zouaghi, Ferdaous & Sanchez Garcia, Mercedes, 2017. "Capturing value from alliance portfolio diversity: The mediating role of R&D human capital in high and low tech industries," Technovation, Elsevier, vol. 59(C), pages 55-67.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.