IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0159226.html
   My bibliography  Save this article

Real-Time Diffusion of Information on Twitter and the Financial Markets

Author

Listed:
  • Ali Tafti
  • Ryan Zotti
  • Wolfgang Jank

Abstract

Do spikes in Twitter chatter about a firm precede unusual stock market trading activity for that firm? If so, Twitter activity may provide useful information about impending financial market activity in real-time. We study the real-time relationship between chatter on Twitter and the stock trading volume of 96 firms listed on the Nasdaq 100, during 193 days of trading in the period from May 21, 2012 to September 18, 2013. We identify observations featuring firm-specific spikes in Twitter activity, and randomly assign each observation to a ten-minute increment matching on the firm and a number of repeating time indicators. We examine the extent that unusual levels of chatter on Twitter about a firm portend an oncoming surge of trading of its stock within the hour, over and above what would normally be expected for the stock for that time of day and day of week. We also compare the findings from our explanatory model to the predictive power of Tweets. Although we find a compelling and potentially informative real-time relationship between Twitter activity and trading volume, our forecasting exercise highlights how difficult it can be to make use of this information for monetary gain.

Suggested Citation

  • Ali Tafti & Ryan Zotti & Wolfgang Jank, 2016. "Real-Time Diffusion of Information on Twitter and the Financial Markets," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0159226
    DOI: 10.1371/journal.pone.0159226
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159226
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0159226&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0159226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Timm O. Sprenger & Andranik Tumasjan & Philipp G. Sandner & Isabell M. Welpe, 2014. "Tweets and Trades: the Information Content of Stock Microblogs," European Financial Management, European Financial Management Association, vol. 20(5), pages 926-957, November.
    2. Amihud, Yakov & Mendelson, Haim & Pedersen, Lasse Heje, 2006. "Liquidity and Asset Prices," Foundations and Trends(R) in Finance, now publishers, vol. 1(4), pages 269-364, February.
    3. Fama, Eugene F & French, Kenneth R, 1996. "Multifactor Explanations of Asset Pricing Anomalies," Journal of Finance, American Finance Association, vol. 51(1), pages 55-84, March.
    4. Mingfeng Lin & Henry C. Lucas & Galit Shmueli, 2013. "Research Commentary ---Too Big to Fail: Large Samples and the p -Value Problem," Information Systems Research, INFORMS, vol. 24(4), pages 906-917, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad H. Juma’h & Yazan Alnsour, 2018. "Using Social Media Analytics: The Effect of President Trump’s Tweets On Companies’ Performance," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 17(1), pages 100-121, March.
    2. Kraaijeveld, Olivier & De Smedt, Johannes, 2020. "The predictive power of public Twitter sentiment for forecasting cryptocurrency prices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    3. Berny Carrera & Jae-Yoon Jung, 2018. "SentiFlow: An Information Diffusion Process Discovery Based on Topic and Sentiment from Online Social Networks," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    4. Peter Gabrovšek & Darko Aleksovski & Igor Mozetič & Miha Grčar, 2017. "Twitter sentiment around the Earnings Announcement events," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    5. Milla Siikanen & Kk{e}stutis Baltakys & Juho Kanniainen & Ravi Vatrapu & Raghava Mukkamala & Abid Hussain, 2017. "Facebook drives behavior of passive households in stock markets," Papers 1709.07300, arXiv.org, revised May 2018.
    6. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    7. Ana Fern'andez Vilas & Rebeca P. D'iaz Redondo & Keeley Crockett & Majdi Owda & Lewis Evans, 2023. "Twitter Permeability to financial events: an experiment towards a model for sensing irregularities," Papers 2312.11530, arXiv.org.
    8. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Tsung-wu & Chang, Shu-Hwa, 2015. "The pricing of liquidity risk on the Shanghai stock market," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 112-130.
    2. Lin, Ji-Chai & Singh, Ajai K. & Yu, Wen, 2009. "Stock splits, trading continuity, and the cost of equity capital," Journal of Financial Economics, Elsevier, vol. 93(3), pages 474-489, September.
    3. Baradarannia, M. Reza & Peat, Maurice, 2013. "Liquidity and expected returns—Evidence from 1926–2008," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 10-23.
    4. Ana Fern'andez Vilas & Rebeca D'iaz Redondo & Ant'on Lorenzo Garc'ia, 2023. "The irruption of cryptocurrencies into Twitter cashtags: a classifying solution," Papers 2312.11531, arXiv.org.
    5. John H. Cochrane, 2011. "Discount Rates," NBER Working Papers 16972, National Bureau of Economic Research, Inc.
    6. Chen, Tsung-Yu & Chou, Pin-Huang & Hsieh, Chia-Hsun & Ghon Rhee, S., 2021. "Momentum life cycle, revisited," Journal of Banking & Finance, Elsevier, vol. 127(C).
    7. Asness, Clifford & Frazzini, Andrea & Israel, Ronen & Moskowitz, Tobias J. & Pedersen, Lasse H., 2018. "Size matters, if you control your junk," Journal of Financial Economics, Elsevier, vol. 129(3), pages 479-509.
    8. Harrison Hong & Terence Lim & Jeremy C. Stein, 2000. "Bad News Travels Slowly: Size, Analyst Coverage, and the Profitability of Momentum Strategies," Journal of Finance, American Finance Association, vol. 55(1), pages 265-295, February.
    9. Rojahn, Joachim & Röhl, Christian W. & Frère, Eric, 2010. "Optimum Portfolio ETF Indices: Benchmarking für multidimensional diversifizierte Wertpapierportfolios," Berichte aus der Forschung der FOM 75202, FOM Hochschule für Oekonomie & Management.
    10. Eun, Cheol & Lee, Kyuseok & Wei, Fengrong, 2023. "Dual role of the country factors in international asset pricing: The local factors and proxies for the global factors," International Review of Financial Analysis, Elsevier, vol. 89(C).
    11. Muhammad Kashif & Thomas Leirvik, 2022. "The MAX Effect in an Oil Exporting Country: The Case of Norway," JRFM, MDPI, vol. 15(4), pages 1-16, March.
    12. Johannes A. Skjeltorp & Bernt Arne Ødegaard, 2009. "The information content of market liquidity: An empirical analysis of liquidity at the Oslo Stock Exchange?," Working Paper 2009/26, Norges Bank.
    13. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    14. Hsin-Han Chen & Hui-Ling Chen & Yi-Tien Lin & Chaou-Wen Lin & Chien-Chang Ho & Hsueh-Yi Lin & Po-Fu Lee, 2020. "The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan," IJERPH, MDPI, vol. 18(1), pages 1-14, December.
    15. Abugri, Benjamin A. & Dutta, Sandip, 2014. "Are we overestimating REIT idiosyncratic risk? Analysis of pricing effects and persistence," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 249-259.
    16. Philip A. Stork, 2011. "The intertemporal mechanics of European stock price momentum," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 28(3), pages 217-232, August.
    17. Robert P. Flood & Andrew K. Rose, 2005. "Financial Integration: A New Methodology And An Illustration," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1349-1359, December.
    18. Dimitrios D. Thomakos & Michail S. Koubouros, 2011. "The Role of Realised Volatility in the Athens Stock Exchange," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 87-124, March - J.
    19. Tobias J. Moskowitz & Mark Grinblatt, 2002. "What Do We Really Know About the Cross-Sectional Relation Between Past and Expected Returns?," Yale School of Management Working Papers ysm259, Yale School of Management.
    20. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0159226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.