IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0156594.html
   My bibliography  Save this article

Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data

Author

Listed:
  • Christian Müller
  • Arne Schillert
  • Caroline Röthemeier
  • David-Alexandre Trégouët
  • Carole Proust
  • Harald Binder
  • Norbert Pfeiffer
  • Manfred Beutel
  • Karl J Lackner
  • Renate B Schnabel
  • Laurence Tiret
  • Philipp S Wild
  • Stefan Blankenberg
  • Tanja Zeller
  • Andreas Ziegler

Abstract

Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data.

Suggested Citation

  • Christian Müller & Arne Schillert & Caroline Röthemeier & David-Alexandre Trégouët & Carole Proust & Harald Binder & Norbert Pfeiffer & Manfred Beutel & Karl J Lackner & Renate B Schnabel & Laurence T, 2016. "Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
  • Handle: RePEc:plo:pone00:0156594
    DOI: 10.1371/journal.pone.0156594
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156594
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0156594&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0156594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Kay Grennan & Judith Badner & Dandan Zhang & Elliot Gershon & Li Jin & Chunyu Liu, 2011. "Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.
    2. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia Qing & Thompson Jeffrey A. & Koestler Devin C., 2021. "Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(4-6), pages 101-119, December.
    2. Almudena Espín-Pérez & Chris Portier & Marc Chadeau-Hyam & Karin van Veldhoven & Jos C S Kleinjans & Theo M C M de Kok, 2018. "Comparison of statistical methods and the use of quality control samples for batch effect correction in human transcriptome data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aline Talhouk & Stefan Kommoss & Robertson Mackenzie & Martin Cheung & Samuel Leung & Derek S Chiu & Steve E Kalloger & David G Huntsman & Stephanie Chen & Maria Intermaggio & Jacek Gronwald & Fong C , 2016. "Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
    2. Charlotte Soneson & Sarah Gerster & Mauro Delorenzi, 2014. "Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    3. Sean M Gibbons & Claire Duvallet & Eric J Alm, 2018. "Correcting for batch effects in case-control microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-17, April.
    4. Xia Qing & Thompson Jeffrey A. & Koestler Devin C., 2021. "Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(4-6), pages 101-119, December.
    5. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. repec:jss:jstsof:40:i14 is not listed on IDEAS
    7. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    8. Emanuele Aliverti & Kristian Lum & James E. Johndrow & David B. Dunson, 2021. "Removing the influence of group variables in high‐dimensional predictive modelling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 791-811, July.
    9. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    10. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    11. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    12. Yunfeng Li & Jarrett Morrow & Benjamin Raby & Kelan Tantisira & Scott T Weiss & Wei Huang & Weiliang Qiu, 2017. "Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-16, March.
    13. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    14. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    15. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.
    17. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    18. Christos Miliotis & Yuling Ma & Xanthi-Lida Katopodi & Dimitra Karagkouni & Eleni Kanata & Kaia Mattioli & Nikolas Kalavros & Yered H. Pita-Juárez & Felipe Batalini & Varune R. Ramnarine & Shivani Nan, 2024. "Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Nicoló Fusi & Oliver Stegle & Neil D Lawrence, 2012. "Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-9, January.
    20. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    21. Jacopo Umberto Verga & Matthew Huff & Diarmuid Owens & Bethany J. Wolf & Gary Hardiman, 2022. "Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes," IJERPH, MDPI, vol. 19(1), pages 1-24, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0156594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.