IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153844.html
   My bibliography  Save this article

Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction

Author

Listed:
  • Aline Talhouk
  • Stefan Kommoss
  • Robertson Mackenzie
  • Martin Cheung
  • Samuel Leung
  • Derek S Chiu
  • Steve E Kalloger
  • David G Huntsman
  • Stephanie Chen
  • Maria Intermaggio
  • Jacek Gronwald
  • Fong C Chan
  • Susan J Ramus
  • Christian Steidl
  • David W Scott
  • Michael S Anglesio

Abstract

A major weakness in many high-throughput genomic studies is the lack of consideration of a clinical environment where one patient at a time must be evaluated. We examined generalizable and platform-specific sources of variation from NanoString gene expression data on both ovarian cancer and Hodgkin lymphoma patients. A reference-based strategy, applicable to single-patient molecular testing is proposed for batch effect correction. The proposed protocol improved performance in an established Hodgkin lymphoma classifier, reducing batch-to-batch misclassification while retaining accuracy and precision. We suggest this strategy may facilitate development of NanoString and similar molecular assays by accelerating prospective validation and clinical uptake of relevant diagnostics.

Suggested Citation

  • Aline Talhouk & Stefan Kommoss & Robertson Mackenzie & Martin Cheung & Samuel Leung & Derek S Chiu & Steve E Kalloger & David G Huntsman & Stephanie Chen & Maria Intermaggio & Jacek Gronwald & Fong C , 2016. "Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0153844
    DOI: 10.1371/journal.pone.0153844
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153844
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153844&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153844?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Kay Grennan & Judith Badner & Dandan Zhang & Elliot Gershon & Li Jin & Chunyu Liu, 2011. "Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-10, February.
    2. Martin Köbel & Steve E Kalloger & Niki Boyd & Steven McKinney & Erika Mehl & Chana Palmer & Samuel Leung & Nathan J Bowen & Diana N Ionescu & Ashish Rajput & Leah M Prentice & Dianne Miller & Jennifer, 2008. "Ovarian Carcinoma Subtypes Are Different Diseases: Implications for Biomarker Studies," PLOS Medicine, Public Library of Science, vol. 5(12), pages 1-1, December.
    3. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    4. Parker Hilary S. & Leek Jeffrey T., 2012. "The practical effect of batch on genomic prediction," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte Soneson & Sarah Gerster & Mauro Delorenzi, 2014. "Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    2. Sean M Gibbons & Claire Duvallet & Eric J Alm, 2018. "Correcting for batch effects in case-control microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-17, April.
    3. Christian Müller & Arne Schillert & Caroline Röthemeier & David-Alexandre Trégouët & Carole Proust & Harald Binder & Norbert Pfeiffer & Manfred Beutel & Karl J Lackner & Renate B Schnabel & Laurence T, 2016. "Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    4. Xia Qing & Thompson Jeffrey A. & Koestler Devin C., 2021. "Batch effect reduction of microarray data with dependent samples using an empirical Bayes approach (BRIDGE)," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 20(4-6), pages 101-119, December.
    5. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. repec:jss:jstsof:40:i14 is not listed on IDEAS
    7. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    8. Emanuele Aliverti & Kristian Lum & James E. Johndrow & David B. Dunson, 2021. "Removing the influence of group variables in high‐dimensional predictive modelling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 791-811, July.
    9. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    10. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    11. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    12. Yunfeng Li & Jarrett Morrow & Benjamin Raby & Kelan Tantisira & Scott T Weiss & Wei Huang & Weiliang Qiu, 2017. "Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-16, March.
    13. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    14. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    15. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.
    17. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    18. Nicoló Fusi & Oliver Stegle & Neil D Lawrence, 2012. "Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-9, January.
    19. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    20. Jacopo Umberto Verga & Matthew Huff & Diarmuid Owens & Bethany J. Wolf & Gary Hardiman, 2022. "Integrated Genomic and Bioinformatics Approaches to Identify Molecular Links between Endocrine Disruptors and Adverse Outcomes," IJERPH, MDPI, vol. 19(1), pages 1-24, January.
    21. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.