IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0154506.html
   My bibliography  Save this article

Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils

Author

Listed:
  • Youngdae Yoon
  • Sunghoon Kim
  • Yooeun Chae
  • Yerin Kang
  • Youngshim Lee
  • Seung-Woo Jeong
  • Youn-Joo An

Abstract

It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency.

Suggested Citation

  • Youngdae Yoon & Sunghoon Kim & Yooeun Chae & Yerin Kang & Youngshim Lee & Seung-Woo Jeong & Youn-Joo An, 2016. "Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0154506
    DOI: 10.1371/journal.pone.0154506
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154506
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0154506&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0154506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ross Nickson & John McArthur & William Burgess & Kazi Matin Ahmed & Peter Ravenscroft & Mizanur Rahmanñ, 1998. "Arsenic poisoning of Bangladesh groundwater," Nature, Nature, vol. 395(6700), pages 338-338, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Atkins & Manzurul Hassan & Christine Dunn, 2007. "Environmental Irony: Summoning Death in Bangladesh," Environment and Planning A, , vol. 39(11), pages 2699-2714, November.
    2. Tiffany VanDerwerker & Lin Zhang & Erin Ling & Brian Benham & Madeline Schreiber, 2018. "Evaluating Geologic Sources of Arsenic in Well Water in Virginia (USA)," IJERPH, MDPI, vol. 15(4), pages 1-17, April.
    3. Laura A. Richards & Arun Kumar & Prabhat Shankar & Aman Gaurav & Ashok Ghosh & David A. Polya, 2020. "Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India," IJERPH, MDPI, vol. 17(7), pages 1-26, April.
    4. Con, T. H. & Hanh, N. T. & Berg, M. & Viet, P. H., 2003. "Release of arsenic from minerals to the water phase," Conference Papers h033501, International Water Management Institute.
    5. Abu Mohd Naser & Thomas F. Clasen & Stephen P. Luby & Mahbubur Rahman & Leanne Unicomb & Kazi M. Ahmed & Solaiman Doza & Shadassa Ourshalimian & Howard H. Chang & Jennifer D. Stowell & K. M. Venkat Na, 2019. "Groundwater Chemistry and Blood Pressure: A Cross-Sectional Study in Bangladesh," IJERPH, MDPI, vol. 16(13), pages 1-14, June.
    6. S. Chidambaram & R. Thilagavathi & C. Thivya & U. Karmegam & M. V. Prasanna & AL. Ramanathan & K. Tirumalesh & P. Sasidhar, 2017. "A study on the arsenic concentration in groundwater of a coastal aquifer in south-east India: an integrated approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1015-1040, June.
    7. Zareena Begum I, 2012. "Arsenic Contamination in Water: A Conceptual Framework of Policy Options," Working Papers 2012-064, Madras School of Economics,Chennai,India.
    8. Aziz, Sonia & Boyle, Kevin & Akanda, Ali S. & Hanifi, M.A. & Pakhtigian, Emily L., 2022. "Early Warning Systems, Mobile Technology, and Cholera Aversion: Evidence from Rural Bangladesh," RFF Working Paper Series 22-24, Resources for the Future.
    9. Viet, P. H. & Con, T. H. & Ha, C. T. & Tin, N. V. & Berg, M. & Giger, W. & Schertenleib, R., 2003. "Arsenic removal technologies for drinking water in Vietnam," Conference Papers h033502, International Water Management Institute.
    10. Muhammad Bilal Shakoor & Nabeel Khan Niazi & Irshad Bibi & Mohammad Mahmudur Rahman & Ravi Naidu & Zhaomin Dong & Muhammad Shahid & Muhammad Arshad, 2015. "Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan," IJERPH, MDPI, vol. 12(10), pages 1-20, October.
    11. Tatsuya Makino & Keigo Noda & Keoduangchai Keokhamphui & Hiromasa Hamada & Kazuo Oki & Taikan Oki, 2016. "The Effects of Five Forms of Capital on Thought Processes Underlying Water Consumption Behavior in Suburban Vientiane," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
    12. Khurshid Jahan & Anwar Zahid & Md Abul Ehsan Bhuiyan & Iqbal Ali, 2022. "A Resilient and Nature-Based Drinking Water Supply Source for Saline and Arsenic Prone Coastal Aquifers of the Bengal Delta," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    13. Madajewicz, Malgosia & Pfaff, Alexander & van Geen, Alexander & Graziano, Joseph & Hussein, Iftikhar & Momotaj, Hasina & Sylvi, Roksana & Ahsan, Habibul, 2007. "Can information alone change behavior? Response to arsenic contamination of groundwater in Bangladesh," Journal of Development Economics, Elsevier, vol. 84(2), pages 731-754, November.
    14. Dipankar Chakraborti & Sushant K. Singh & Mohammad Mahmudur Rahman & Rathindra Nath Dutta & Subhas Chandra Mukherjee & Shyamapada Pati & Probir Bijoy Kar, 2018. "Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger," IJERPH, MDPI, vol. 15(2), pages 1-19, January.
    15. Faisal Hossain & Jason Hill & Amvrossios Bagtzoglou, 2007. "Geostatistically based management of arsenic contaminated ground water in shallow wells of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1245-1261, July.
    16. Mohammad A. Hoque & Adrian P. Butler, 2015. "Medical Hydrogeology of Asian Deltas: Status of Groundwater Toxicants and Nutrients, and Implications for Human Health," IJERPH, MDPI, vol. 13(1), pages 1-20, December.
    17. Wengeng Cao & Yu Ren & Qiuyao Dong & Zeyan Li & Shunyu Xiao, 2022. "Enrichment of High Arsenic Groundwater Controlled by Hydrogeochemical and Physical Processes in the Hetao Basin, China," IJERPH, MDPI, vol. 19(20), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0154506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.