IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0152296.html
   My bibliography  Save this article

Quantitative Assessment of the Polymorphisms in the HOTAIR lncRNA and Cancer Risk: A Meta-Analysis of 8 Case-Control Studies

Author

Listed:
  • Tian Tian
  • Chunjian Li
  • Jing Xiao
  • Yi Shen
  • Yihua Lu
  • Liying Jiang
  • Xun Zhuang
  • Minjie Chu

Abstract

HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) that functions as an oncogenic molecule in different cancer cells. Genetic variants of HOTAIR may affect the activity of certain regulatory factors and further regulate the aberrant expression of HOTAIR, which might be underlying mechanisms that affect tumour susceptibility and prognosis. Recently, several studies have been performed to examine the possible link between polymorphisms in HOTAIR and cancer risk; however, the results have been inconclusive. Therefore, we performed a meta-analysis to estimate the associations between HOTAIR polymorphisms (rs920778, rs4759314 and rs1899663) and cancer risk. Eight studies comprising 7,151 cases and 8,740 controls were included in our study. Overall, no significant associations between the HOTAIR polymorphisms (rs920778, rs4759314 and rs1899663) and cancer risk were observed. However, in further stratified analyses, the variant T allele of rs920778 exhibited a significant increased risk of developing digestive cancers (dominant model: OR = 1.44; 95% CI = 1.31–1.59). These findings provided evidence that HOTAIR rs920778 may modify the susceptibility to certain cancer types. Further studies incorporating subjects with different ethnic backgrounds combined with re-sequencing of the marked region and functional evaluations are warranted.

Suggested Citation

  • Tian Tian & Chunjian Li & Jing Xiao & Yi Shen & Yihua Lu & Liying Jiang & Xun Zhuang & Minjie Chu, 2016. "Quantitative Assessment of the Polymorphisms in the HOTAIR lncRNA and Cancer Risk: A Meta-Analysis of 8 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
  • Handle: RePEc:plo:pone00:0152296
    DOI: 10.1371/journal.pone.0152296
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152296
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0152296&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0152296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sooryanarayana Varambally & Saravana M. Dhanasekaran & Ming Zhou & Terrence R. Barrette & Chandan Kumar-Sinha & Martin G. Sanda & Debashis Ghosh & Kenneth J. Pienta & Richard G. A. B. Sewalt & Arie P., 2002. "The polycomb group protein EZH2 is involved in progression of prostate cancer," Nature, Nature, vol. 419(6907), pages 624-629, October.
    2. Mitchell Guttman & John L. Rinn, 2012. "Modular regulatory principles of large non-coding RNAs," Nature, Nature, vol. 482(7385), pages 339-346, February.
    3. Qiwen Deng & Huiling Sun & Bangshun He & Yuqin Pan & Tianyi Gao & Jie Chen & Houqun Ying & Xian Liu & Feng Wang & Yong Xu & Shukui Wang, 2014. "Prognostic Value of Long Non-Coding RNA HOTAIR in Various Cancers," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengrui Feng & Sajid A. Marhon & Dustin J. Sokolowski & Alister D’Costa & Fraser Soares & Parinaz Mehdipour & Charles Ishak & Helen Loo Yau & Ilias Ettayebi & Parasvi S. Patel & Raymond Chen & Jiming, 2024. "Inhibiting EZH2 targets atypical teratoid rhabdoid tumor by triggering viral mimicry via both RNA and DNA sensing pathways," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
    3. Yatian Li & Zhenyue Gao & Yuhong Wang & Bo Pang & Binbin Zhang & Ruxin Hu & Yuqing Wang & Chao Liu & Xuebin Zhang & Jingxuan Yang & Mei Mei & Yongzhi Wang & Xuan Zhou & Min Li & Yu Ren, 2023. "Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Shivali Patel & Alec N. Sexton & Madison S. Strine & Craig B. Wilen & Matthew D. Simon & Anna Marie Pyle, 2023. "Systematic detection of tertiary structural modules in large RNAs and RNP interfaces by Tb-seq," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Lihui Liu & Ziyang Liu & Qinghua Liu & Wei Wu & Peng Lin & Xing Liu & Yuechuan Zhang & Dongpeng Wang & Briana C. Prager & Ryan C. Gimple & Jichuan Yu & Weixi Zhao & Qiulian Wu & Wei Zhang & Erzhong Wu, 2023. "LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2’-O-methylation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Ayushi Verma & Akhilesh Singh & Manish Pratap Singh & Mushtaq Ahmad Nengroo & Krishan Kumar Saini & Saumya Ranjan Satrusal & Muqtada Ali Khan & Priyank Chaturvedi & Abhipsa Sinha & Sanjeev Meena & Anu, 2022. "EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    8. Debashis Ghosh & Arul Chinnaiyan, 2004. "Covariate adjustment in the analysis of microarray data from clinical studies," The University of Michigan Department of Biostatistics Working Paper Series 1030, Berkeley Electronic Press.
    9. Antonio Rodriguez-Calero & John Gallon & Dilara Akhoundova & Sina Maletti & Alison Ferguson & Joanna Cyrta & Ursula Amstutz & Andrea Garofoli & Viola Paradiso & Scott A. Tomlins & Ekkehard Hewer & Ver, 2022. "Alterations in homologous recombination repair genes in prostate cancer brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Weiwei Han & Zhenyu Zhang & Bangshun He & Yijun Xu & Jun Zhang & Weijun Cao, 2017. "Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-12, August.
    11. Christian Much & Erika L. Lasda & Isabela T. Pereira & Tenaya K. Vallery & Daniel Ramirez & Jordan P. Lewandowski & Robin D. Dowell & Michael J. Smallegan & John L. Rinn, 2024. "The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Marco Bolis & Daniela Bossi & Arianna Vallerga & Valentina Ceserani & Manuela Cavalli & Daniela Impellizzieri & Laura Di Rito & Eugenio Zoni & Simone Mosole & Angela Rita Elia & Andrea Rinaldi & Ricar, 2021. "Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    13. Nishit Goradia & Stefan Werner & Edukondalu Mullapudi & Sarah Greimeier & Lina Bergmann & Andras Lang & Haydyn Mertens & Aleksandra Węglarz & Simon Sander & Grzegorz Chojnowski & Harriet Wikman & Oliv, 2024. "Master corepressor inactivation through multivalent SLiM-induced polymerization mediated by the oncogene suppressor RAI2," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Harshita Sharma & Matthew N. Z. Valentine & Naoko Toki & Hiromi Nishiyori Sueki & Stefano Gustincich & Hazuki Takahashi & Piero Carninci, 2024. "Decryption of sequence, structure, and functional features of SINE repeat elements in SINEUP non-coding RNA-mediated post-transcriptional gene regulation," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0152296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.